I CONGRESO NACIONAL DE
ENTOMOLOGÍA APLICADA

Memorias
DIRECTORIO

Dr. Néstor Bautista Martínez
PRESIDENTE

Dr. Rafael Bujanos Muñiz
VICEPRESIDENTE

Dr. Clemente de Jesús García Ávila
SECRETARIO

Dra. María Graciela González Santa Rosa
TESORERA

Dr. Francisco Santos González
VOCAL

Editado por Ricardo Meraz Álvarez
Junio de 2018
PRESENTACIÓN ... 5
RECONOCIMIENTO AL MÉRITO ENTOMOLÓGICO ... 6
CONFERENCIAS MAGISTRALES ... 7
SIMPOSIUM .. 8
PRESENTACIONESORALES .. 11

SECCIÓN: AGRÍCOLA .. 11
MANEJO REGIONAL DEL PSÍLIDO ASIÁTICO DE LOS CÍTRICOS Diaphorina citri (HEMIPTERA: LIVIIDAE) EN MICHOACÁN .. 11
SUSCEPTIBILIDAD DE Diaphorina citri VECTOR DEL HLB A INSECTICIDAS EN EL ESTADO DE VERACRUZ. .. 15
RESISTENCIA DE Diaphorina citri (HEMIPTERA: LIVIIDAE) A INSECTICIDAS EN ÁREAS REGIONALES DE CONTROL EN MÉXICO .. 19
PARÁMETROS POBLACIONALES DE Dactylopis opuntiae COCKERELL (HEMIPTERA: DACTYLOPIIÍADE) EN CONDICIONES DE INVERNADERO ... 23
MANEJO INTEGRADO DE LAS MOSCAS DE LA FRUTA Anastrepha spp (DIPTERA: TEPHRITIDÆ) EN MICHOACÁN .. 25
DISTRIBUCIÓN ESPACIAL DE Eoreuma loftini (DYAR, 1917) (LEPIDOPTERA: CRAMBIIDÆ) EN CAÑA DE AZÚCAR EN REGIÓN CENTRO DEL ESTADO VERACRUZ .. 29
SITUACIÓN ACTUAL DEL PULGÓN AMARILLO DEL SORGO Melanaphis sacchari (ZEHNTERN) (HOMOPTERA: APHIDIIDÆ) EN LA REGIÓN LAGUNERA .. 30
COMPARACIÓN DE SÍNTOMAS DE LA LEPROSIS DE LOS CÍTRICOS EN DIFERENTES ESPECIES CITRÍCOLAS EN MÉXICO .. 34
INCIDENCIA DE DAÑO DE Aculops lycopersici (TROMBIDIFORMES: ERIOPHYIDÆ) Y SU REDUCCIÓN DEL RENDIMIENTO EN TRES VARIEDADES DE JITOMATE ... 39
DAÑOS DEL CARACOL COMÚN DE JARDÍN (Helix aspersa) (STYLOMMATOPHORA: HELCIDÆ) EN MANZANO Y ACCIONES PARA SU CONTROL .. 43

SECCIÓN: CONTROL BIOLÓGICO ... 46
ESTRATEGIA REPRODUCTIVA DE Diachasmimorpha longicaudata (ASHMEAD) y Doryctobracon crawfordi (VIERECK) (HYMENOPTERA: BRACONIDÆ) .. 46
PARÁMETROS PARA EVALUAR LA CALIDAD EN EL PROCESO DE LIBERACIÓN AÉREA DE Diachasmimorpha longicaudata (HYMENOPTERA: BRACONIDÆ) .. 50
EFECTO DE INSECTICIDAS EN Poblaciones del PULGÓN AMARILLO DEL SORGO Y SUS ENEMIGOS NATURALES .. 54
USO DE CENTINelas PARA MONITOREAR PARASITISMO EN HUEVOS DE GUSANO COGOLLERO, Spodoptera frugiperda (LEPIDOPTERA: NOCTUIDAE) .. 58
PORCENTAJE DE CONTROL DE DOS PARASITÓIDES DE LARVA SOBRE Anthonomus eugenii (COLEOPTERA: CURCULIONIDÆ) EN TRES VARIEDADES DE CHILE ... 62
DEPREDAción DE Catolaccus hunteri (HYMENOPTERA: PTEROMALIDÆ) SOBRE HUEVO Y LARVAS JÓVENES DE Anthonomus eugenii (COLEOPTERA: CURCULIONIDÆ) ... 66
PARASITISMO EN Trioza aguacate (HEMIPTERA: TRIOZIDÆ) POR Tammarixia aguacatensis (HYMENOPTERA: EUOPHIDÆ) EN MICHOACÁN, MÉXICO ... 70
ESTRATEGIAS AGROECOLÓGICAS PARA LA PRODUCCIÓN DE JITOMATE: GENOTIPOS CRIOLLOS Y CONTROL BIOLÓGICO COMO BASE ... 74
SECCIÓN: PLAGAS CUARENTENARIAS .. 79
MODELOS ESTADÍSTICOS PARA ESTIMAR LA INCIDENCIA Y EL RIESGO RELATIVO DE PLAGAS CUARENTENARIAS. ... 79
ESPECIES DE Conotrachelus (COLEOPTERA: CURCULIONIDAE) DE IMPORTANCIA AGRÍCOLA Y CUARENTENARIA PARA MÉXICO. ... 83
Conotrachelus posticus (COLEOPTERA: CURCULIONIDAE) PLAGA CONTAMINANTE EN AGUACATE DE EXPORTACIÓN. ... 86
PLAGAS REGULADAS PARA LA EXPORTACIÓN DE FRUTILLAS A CHINA. 89

SECCIÓN: INCIDENCIA Y NUEVOS REGISTROS .. 92
IDENTIFICACIÓN DE ESCAMAS CEROSAS DEL GÉNERO Ceroplastes (HEMIPTERA: COCCIDAE) EN LOS CULTIVOS DE AGUACATE Y MARACUYÁ. .. 92
INCIDENCIA DE TRIPS (THYSANOPTERA: THRIPIDAE) EN CULTIVO DE AJO EN ARAMBERRI, N. L. Y SU RELACIÓN CON EL VIRUS IYSV. .. 96
Dactylopius confusus (COCKERELL), (HEMIPTERA: DACYTOPHPIIIDA): PRIMER REGISTRO DE SU PRESENCIA EN MICHOACÁN, MÉXICO. .. 100

SECCIÓN: ESTRATEGIAS PARA EL MANEJO DE PLAGAS 102
ESQUEMA SENCILLO PARA ENTENDER CÓMO SE DESARROLLA LA RESISTENCIA NO METABÓLICA. 102
ANTIXENOSIS EN 11 GENOTIPOS DE SORGO PARA Melanaphis sacchari (HEMIPTERA: APHIDAE). ... 102
DESARROLLO DE UN PROTECTOR DE MAÍZ ALMACENADO: EL CASO DEL GRANIM. 107
DIÁS DE PROTECCIÓN DE DESTELLO 480 SC Y DE SUS PRINCIPALES COMPETIDORES CONTRA GUSANO COGOLLERO, Spodoptera frugiperda, EN EL CULTIVO DE MAÍZ. .. 109
INCIDENCIA Y TRAMPEO DE LA MOSCA AFRICANA DEL HIGO, Zaprinus indianus GUPTA (DIPTERA: DROSOPHILIDAE) EN CULTIVOS DE HIGO PARA EXPORTACIÓN. 110
EVALUACIÓN DE CEBOS Y TRAMPAS PARA SU USO EN EL MONITOREO Y CONTROL DE Drosophila suzuki (DIPTERA: DROSOPHILIDAE) EN MÉXICO. ... 113
CONTROL DEL GUSANO MEDIOD DEL AGUACATE Caripteta sp (LEPIDOPTERA: GEOMETRIDAE) CON INSECTICIDAS BIORRACIONALES. .. 117
USO DE INSECTICIDAS BOTÁNICOS PARA EL CONTROL DE TRIPS EN AGUACATE. 121
TOXICIDAD DE INSECTICIDAS DE NUEVA GENERACIÓN SOBRE LA ABEJA Apis mellifera (LINNAEUS) (HYMENOPTERA: APIDAE). ... 124
EFECTO OVICIDA DE SPIROTRETAMAT Y FLUPYRADIFURONE EN Bactericero cockerelli Sulc (HEMIPTERA: TRIOZIDAE). ... 126

SECCIÓN: MÉDICA ... 131
TOXICIDAD DE EXTRACTOS de Agave karwinskii (ASPARAGALES: ASPARAGACEAE) SOBRE Culex quinquefasciatus (DIPTERA: CULICIDAE). ... 131
POSIBLE MANIPULACIÓN DE LA CONDUCTA de Meccus pallidipennis, (HEMIPTERA: REDUVIIDAE) POR Trypanosoma cruzi, (TRYPANOSOMATIDA: TRYPANOSOMATIDAE), AGENTE CAUSAL DE LA ENFERMEDAD DE CHAGAS. ... 136
ACTIVIDAD LARVICIDA DE ACEITES ESENCIALES PARA EL CONTROL DE M. domestica. 140
CONTROL BIOLÓGICO DE MOSQUITOS VECTORES DEL PALUDISMO CON NEMÁTODOS PARÁSITOS Romanomermis spp. ... 145
EFECTO LARVICIDA DEL EXTRACTO NATURAL DE PIRUL (Schinus molle) SOBRE Culex quinquefasciatus & Aedes aegypti (DIPTERA, CULICIDAE). ... 147
CARACTERÍSTICAS DE HÁBITAT Y COMPORTAMIENTO DE DEPREDACIÓN de Lutzia bigoti Bellardi (DIPTERA: CULICIDAE) DEL MEQUITAL DURANGO .. 151

SECCIÓN: URBANA .. 157
USO DE ACEITE DE LARVAS DE Tenebrio molitor (COLEOPTERA: TENEBRIONIDAE) PARA LA PRODUCCIÓN DE BIODIESEL ... 157
REVISIÓN DE LA FAMILIA BOSTRICHIDAE LATREILLE, 1802 (ORDEN COLEOPTERA) EN LA COLECCIÓN ENTOMOLÓGICA DEL LABORATORIO DE BIODETERIORO E INVESTIGACIÓN DEL CENCROPAM-INBA.. 160

SECCIÓN: FORESTAL .. 164
PRESENCIA DE PLAGAS FORESTALES EN EL ESTADO DE MÉXICO (SEPTIEMBRE 2015-SEPTIEMBRE 2017). .. 168

SECCIÓN: DIVERSES APLICACIONES DE LA ENTOMOLOGÍA 172
TASA DE SOBREVIVENCIA de Galleria mellonella (LEPIDOPTERA: PYRALIDAE) DURANTE EL ESTADO LARVARIO EN EL PROCESO DE PRODUCCIÓN COMO ALIMENTO DE REPTILES. ... 172
ESTUDIO DE INSECTOS ASOCIADOS A CADÁVERES HUMANOS: CASO DE INSECTOS ENCONTRADOS EN CADÁVERES EN LA CIUDAD DE MÉXICO. ... 176
RIQUEZA DE LA DIVERSIDAD DE ARTRÓPODOS EXISTENTES EN LA REGIÓN TIERRA CALiente DE GUERRERO. .. 180
DESEARROLLO DE LARVAS DE Hermetia illucens (DIPTERA STRATIOMYIDAE) ALIMENTADAS CON DESECHOS MUNICIPALES .. 184

CARTELES .. 189
EVALUACIÓN DEL INSECTICIDA KADABRA PARA EL CONTROL DE TERMITAS (Heterotermes spp) (ISOPTERA: RHINOTERMITIDAE) EN EL CULTIVO DE CAÑA DE AZÚCAR. ... 189
RELACIÓN ENTRE EL TIEMPO DE ADQUISICIÓN Y LA CONCENTRACIÓN DEL VIRUS DE LA LEPROSIS (CILV-C) EN ADULTOS DE Brevipalpus yothersi. ... 193
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN FRESA (Fragaria x ananassa) 196
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN TOMATE (Solanum lycopersicum L.). ... 196
EVALUACIÓN DEL INSECTICIDA KADABRA PARA EL CONTROL DE TERMITAS (Heterotermes spp) (ISOPTERA: RHINOTERMITIDAE) EN EL CULTIVO DE CAÑA DE AZÚCAR. ... 189
RELACIÓN ENTRE EL TIEMPO DE ADQUISICIÓN Y LA CONCENTRACIÓN DEL VIRUS DE LA LEPROSIS (CILV-C) EN ADULTOS DE Brevipalpus yothersi. ... 193
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN FRESA (Fragaria x ananassa) 196
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN TOMATE (Solanum lycopersicum L.). ... 196
EVALUACIÓN DEL INSECTICIDA KADABRA PARA EL CONTROL DE TERMITAS (Heterotermes spp) (ISOPTERA: RHINOTERMITIDAE) EN EL CULTIVO DE CAÑA DE AZÚCAR. ... 189
RELACIÓN ENTRE EL TIEMPO DE ADQUISICIÓN Y LA CONCENTRACIÓN DEL VIRUS DE LA LEPROSIS (CILV-C) EN ADULTOS DE Brevipalpus yothersi. ... 193
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN FRESA (Fragaria x ananassa) 196
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN TOMATE (Solanum lycopersicum L.). ... 196
EVALUACIÓN DEL INSECTICIDA KADABRA PARA EL CONTROL DE TERMITAS (Heterotermes spp) (ISOPTERA: RHINOTERMITIDAE) EN EL CULTIVO DE CAÑA DE AZÚCAR. ... 189
RELACIÓN ENTRE EL TIEMPO DE ADQUISICIÓN Y LA CONCENTRACIÓN DEL VIRUS DE LA LEPROSIS (CILV-C) EN ADULTOS DE Brevipalpus yothersi. ... 193
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN FRESA (Fragaria x ananassa) 196
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN TOMATE (Solanum lycopersicum L.). ... 196
EVALUACIÓN DEL INSECTICIDA KADABRA PARA EL CONTROL DE TERMITAS (Heterotermes spp) (ISOPTERA: RHINOTERMITIDAE) EN EL CULTIVO DE CAÑA DE AZÚCAR. ... 189
RELACIÓN ENTRE EL TIEMPO DE ADQUISICIÓN Y LA CONCENTRACIÓN DEL VIRUS DE LA LEPROSIS (CILV-C) EN ADULTOS DE Brevipalpus yothersi. ... 193
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN FRESA (Fragaria x ananassa) 196
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN TOMATE (Solanum lycopersicum L.). ... 196
EVALUACIÓN DEL INSECTICIDA KADABRA PARA EL CONTROL DE TERMITAS (Heterotermes spp) (ISOPTERA: RHINOTERMITIDAE) EN EL CULTIVO DE CAÑA DE AZÚCAR. ... 189
RELACIÓN ENTRE EL TIEMPO DE ADQUISICIÓN Y LA CONCENTRACIÓN DEL VIRUS DE LA LEPROSIS (CILV-C) EN ADULTOS DE Brevipalpus yothersi. ... 193
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN FRESA (Fragaria x ananassa) 196
EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN TOMATE (Solanum lycopersicum L.). ... 196
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMER REPORTE DE Chilocorus sp (COLEOPTERA: COCCINELLIDAE) COMO DEPREDADOR DE Melanaphis sacchari (HEMIPTERA: APHIDIDAE), EN SORGO, EN NUEVO LEÓN, MÉXICO.</td>
<td>237</td>
</tr>
<tr>
<td>MALEZA HOSPEDANTE DE Haplaxius (Myndus) crudus VAN DUZEE (HEMIPTERA: CIXIIDAE) EN EL ÁREA URBANA DE TORREÓN, COAHUILA.</td>
<td>239</td>
</tr>
<tr>
<td>COMPARACIÓN DE DIETAS ARTIFICIALES EN EL DESARROLLO, COLORACIÓN Y SISTEMA INMUNE DE Helicoverpa armigera, (LEPIDOPTERA: NOCTUIDAE).</td>
<td>243</td>
</tr>
<tr>
<td>RESPUESTA DE DIFERENTES GENOTIPOS DE Amaranthus spp AL ATAQUE DEL BARRENADOR DEL TALLO Amauromyza abnormalis (MALLOCH) (DIPTERA: AGROMYZIDAE).</td>
<td>249</td>
</tr>
<tr>
<td>CICLO DE VIDA DE Herpetogramma bipunctalis (LEPIDOPTERA: PYRALIDAE) EN CONDICIONES CONTROLADAS DE TEMPERATURA Y HUMEDAD.</td>
<td>253</td>
</tr>
<tr>
<td>Bacillus thuringiensis var israeliensis (BTI) PARA EL CONTROL LARVARIO DE Aedes aegypti (LINNAEUS, 1762) (DIPTERA: CULICIDAE) BAJO CONDICIONES DE LABORATORIO.</td>
<td>258</td>
</tr>
<tr>
<td>MOSQUITOS (DIPTERA: CULICIDAE) DE LAS LOCALIDADES: LAS MINAS Y TLACOACHISTLAHUACA, GUERRERO, MÉXICO.</td>
<td>262</td>
</tr>
<tr>
<td>ACTIVIDAD DE FENOLOXIDASA Y ADHERENCIA A LA MEMBRANA PERIMICROVELLOSA EN Meccus pallidipennis (HEMIPTERA: REDUVIIDAE) INFECTADOS CON TRYPANOSOMA CRUZI (TRYPANOSOMATIDAE).</td>
<td>265</td>
</tr>
<tr>
<td>OBSERVACIONES DEL TRATAMIENTO DE LARVAS DE MOSCA Lucilia sericata, EN HERIDAS DE PIE DIABÉTICO WAGNER I.</td>
<td>268</td>
</tr>
<tr>
<td>CARACTERÍSTICAS DEL CICLO BIOLÓGICO DE Lucilia sericata, OBSERVACIONES EN SU DIETA: SUS POSIBLES IMPLICACIONES EN EL USO DE LARVAS PARA PIE DIABÉTICO.</td>
<td>269</td>
</tr>
</tbody>
</table>
La presente memoria reúne los trabajos presentados durante el I Congreso Nacional de Entomología Aplicada celebrado del 4 al 6 de junio de 2018 en las instalaciones del Hotel Radisson Poliforum Plaza con sede en León, Guanajuato, México; aquí se encuentran los resúmenes de las presentaciones orales y de los carteles colocados en dicho evento. Este documento se encuentra dividido en varias secciones para facilitar su consulta. Adicionalmente, se hace referencia a las conferencias magistrales y simposios presentados así como a la entrega de reconocimientos al Mérito Entomológico.
La Academia Mexicana de Entomología Aplicada, reconoció la trayectoria de dos entomólogos destacados por su trayectoria y aportes científicos, técnicos y tecnológicos en el marco de las actividades del I Congreso Nacional de Entomología Aplicada. Los reconocimientos fueron entregados al M.C. Jorge Manuel Valdez Carrasco y al Dr. Fernando Tamayo Mejía, el pasado cinco de junio de 2018 en la Ciudad de León, Guanajuato.
CONFERENCIAS MAGISTRALES

Necesidades de Investigación en Sanidad Vegetal
Dr. Francisco Javier Trujillo Arriaga
Director General de Sanidad Vegetal (SENASICA-DGSV)

Avances en la investigación y manejo del pulgón amarillo del sorgo
Dr. Rafael Bujanos Muñiz
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)

Experiencias en el manejo de ambrosiales del aguacatero en Florida, EE UU
M. C. Octavio Menocal / Dr. Daniel Carrillo
University of Florida

Plagas emergentes en México
Dr. José Abel López Buenfil
Director del Centro Nacional de Referencia Fitosanitaria (CNRF) SENASICA-DGSV

Situación actual de la sanidad forestal en México
Dr. David Cibrián Tovar
Universidad Autónoma Chapingo

Otro de los temas de gran interés que se impartieron como conferencias fue “Funciones institucionales del SNITT y su aportación en la investigación agrícola nacional” dictada por el **Ing. Paulino Benigno Cruz**, (Coordinador de Programas y Proyectos) y el **Dr. Marcelo Garrido Torres** (Técnico Especializado); ambos en representación del **Sistema Nacional de Investigación y Transferencia Tecnológica para el Desarrollo Rural Sustentable (SNITT)**. El objetivo principal del **SNITT** fue promover el desarrollo tecnológico y de innovación para la solución de problemas nacionales en materia agropecuaria.
SIMPOSIO

MANEJO DE PLAGAS EN CRUCÍFERAS

<table>
<thead>
<tr>
<th>Título</th>
<th>Autor</th>
<th>Institución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación y daños de la mosca de las crucíferas</td>
<td>M.C. Ricardo Meraz Álvarez</td>
<td>Colegio de Postgraduados</td>
</tr>
<tr>
<td>Rotación toxicológica de ingredientes activos para el manejo de plagas en crucíferas</td>
<td>Dr. Rafael Bujanos Muñiz</td>
<td>INIFAP Celaya, Guanajuato</td>
</tr>
<tr>
<td>Daños y Control de la Chinche Bagrada</td>
<td>Dra. Reyna Ivonne Torres Acosta</td>
<td>Universidad Autónoma de Tamaulipas</td>
</tr>
<tr>
<td>Mercado de Cruceserias</td>
<td>Ing. Esteban Macías</td>
<td>Grupo U</td>
</tr>
</tbody>
</table>

FITOSANIDAD Y COMERCIALIZACIÓN DE FRUTILLAS

<table>
<thead>
<tr>
<th>Título</th>
<th>Autor</th>
<th>Institución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perspectivas en la comercialización de frutillas</td>
<td>Ing. Juan José Flores García</td>
<td>Director General ANEBERRIES</td>
</tr>
<tr>
<td>Complejo de enfermedades en berries y su manejo</td>
<td>Dr. Ángel Rebollar Alviter</td>
<td>Universidad Autónoma Chapingo</td>
</tr>
<tr>
<td>Ácaros fitófagos en berries</td>
<td>Dra. Ma. Teresa Santillán Galicia</td>
<td>Colegio de Postgraduados</td>
</tr>
<tr>
<td>El manejo racional de plaguicidas: el camino para evitar que el combate químico sea más peligroso que las plagas</td>
<td>Dr. J. Concepción Rodríguez Maciel</td>
<td>Colegio de Postgraduados</td>
</tr>
<tr>
<td>Alternativas de Control Biológico para la Mosca del vinagre de alas manchadas, Drosophila suzukii</td>
<td>M.C. Hugo César Arredondo Bernal</td>
<td>Director del Centro Nacional de Referencia de Control Biológico (CNRCB) SENASICA-DGSV</td>
</tr>
<tr>
<td>Requerimientos para la exportación de frutillas a China</td>
<td>Ing. Javier Bello Hernández</td>
<td>Responsable de Programas de Exportación SENASICA-DGSV</td>
</tr>
<tr>
<td>Tema</td>
<td>Autor</td>
<td>Institution</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>La fitosanidad y comercialización del aguacate</td>
<td>Ing. Héctor Guillén León</td>
<td>INATEC</td>
</tr>
<tr>
<td>Biología y manejo trips en aguacate</td>
<td>M. C. Braulio Alberto Lemus Soriano</td>
<td>Facultad de Agronomía de la Universidad Michoacana de San Nicolás de Hidalgo (UMSH), Uruapan, Mich.</td>
</tr>
<tr>
<td>Escamas en aguacatero, identificación y biología</td>
<td>Dr. Héctor González Hernández</td>
<td>Colegio de Postgraduados</td>
</tr>
<tr>
<td>Estrategias de vigilancia epidemiológica de los complejos de escarabajos ambrosiales Xyleborus glabratus-Raffaelea lauricola y Euwallacea sp-Fusarium euwallaceae, en aguacate en México</td>
<td>Ing. Rigoberto González Gómez</td>
<td>Colegio de Postgraduados</td>
</tr>
<tr>
<td>Comportamiento de vuelo de escarabajos ambrosiales asociados a la marchitez del laurel en aguacate</td>
<td>M.C. Octavio Menocal/Dr. Daniel Carrillo</td>
<td>University of Florida</td>
</tr>
<tr>
<td>Ecología y manejo de moscas blancas en aguacate.</td>
<td>Dra. Laura D. Ortega Arenas</td>
<td>Colegio de Postgraduados</td>
</tr>
<tr>
<td>Importancia del Análisis de Riesgo de Plagas y su Relación con la Entomología Aplicada</td>
<td>M.C. José Ulises García Romero</td>
<td>Coordinador del Análisis de Riesgos de Plagas del CNRF SENASICA-DGSV</td>
</tr>
<tr>
<td>MANEJO DE INSECTOS VECTORES DE ENFERMEDADES EN HUMANOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enfermedades en humanos transmitidas por insectos y su impacto en la economía</td>
<td>Dr. Fabián Correa Morales</td>
<td>Subdirector de Vectores, CENAPRECE</td>
</tr>
<tr>
<td>Taxonomía y distribución de mosquitos</td>
<td>M. C. Filemón Morales Hernández</td>
<td>Colegio de Postgraduados</td>
</tr>
<tr>
<td>Spinosad, alternativa en el control de Aedes aegypti: Genética y estabilidad de la resistencia.</td>
<td>M. C. Filemón Morales Hernández</td>
<td></td>
</tr>
<tr>
<td>Detección de mecanismos de resistencia a insecticidas en mosquitos, con énfasis en Aedes aegypti</td>
<td>M. C. Filemón Morales Hernández</td>
<td></td>
</tr>
<tr>
<td>Dra. Adriana Elizabeth Flores Suárez</td>
<td>Jefe de Departamento de Zoología de Invertebrados, Facultad de Ciencias Biológicas de la UANL</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Dr. Gustavo Sánchez Tejeda</td>
<td>Director del Programa de Enfermedades Transmitidas por Vectores, CENAPRECE</td>
<td></td>
</tr>
<tr>
<td>M. C. Ana Laura Pacheco Soriano</td>
<td>ECOSUR-Tapachula</td>
<td></td>
</tr>
</tbody>
</table>

NUEVAS TECNOLOGÍAS PARA EL MANEJO DE PLAGAS

- **Proceso actual para el registro de plaguicidas con base en la NOM-032-SAG/FITO-2014**
 - Ing. Silvia Elena Rojas Villegas
 - Directora de la DIAOOPA, SENASICA

- **Límites máximos de residuos, usos y establecimiento**
 - Ing. José Abel Toledo Martínez
 - AGROBIEN, S. C.

- **Introducción de nuevos compuestos feromonales para la detección y manejo plagas**
 - M.C. Ramón Cuellar Valdés
 - SQUID BIOLOGICAL & PHEROMONES

- **La técnica del insecto estéril, una herramienta de control de insectos plaga**
 - Ing. Arturo Bello Rivera
 - Campaña Nacional contra Moscas de la Fruta, SENASICA-DGSV

- **Nuevas moléculas para el control de plagas**
 - Dr. Francisco Santos González
 - Bayer Cropscience México

- **Cruiser 5 FS: Estrategia Syngenta para el manejo del pulgón amarillo del sorgo**
 - M.C. Adán Álvarez Medina
 - Syngenta Agro, S.A. De C.V.

- **Principios y estrategias de manejo de resistencia a insecticidas con un enfoque en diamidas (IRAC – Grupo 28)**
 - Ing. José del Refugio Muñoz Flores
 - Gerente de investigación y desarrollo, FMC Agroquímica de México

- **Nuevos productos registrados para el control de plagas**
 - Ing. Sergio Islas
 - Gerente de Desarrollo de Productos, Valent de México

- **Nuevo ingrediente activo para control de plagas de alto impacto en frutales y vegetales**
 - Dr. Luis Antonio Turcios Palomo
 - Coordinador de Markerting y Desarrollo Agroquímicos, Helm de México, S.A.

- **Estado actual y perspectivas del control biológico por aumento en México**
 - Dr. José Refugio Lomelí Flores
 - Colegio de Postgraduados

Para determinar la fluctuación poblacional del psílido asiático de los cítricos, se muestrearon cada quince días huertas de Limón Mexicano, Toronja y Limón Persa, además de asociaciones de cítricos. Las huertas se ubicaron en los municipios de Buenavista, Apatzingán y Parácuaro los cuales concentran el 70% de la superficie del Valle de Apatzingán. En cada huerta se seleccionaron 20 árboles (10 de la periferia y 10 en posición diagonal). En cada árbol se revisó un brote joven por árbol, el brote se ubicaba a una altura de 1.5 m. De cada brote se cuantificó el número de adultos, ninfas y enemigos naturales.
Diaphorina citri se presenta a lo largo del año, debido a las condiciones ambientales y a las prácticas de manejo promovidas por los productores (Miranda y López-Arroyo 2009). En Limón Mexicano, se presentan al año cuatro picos poblacionales (septiembre, diciembre, abril y julio). En el primer año de muestreo, el mayor número de ninfas se presentó en diciembre y julio (8 ninfas/brote), además de septiembre y abril (6 ninfas/brote). La mayor densidad se presentó en Apatzingán de noviembre a diciembre del 2009 (13 ninfas/brote). Es importante señalar el hecho de que esta huerta está altamente tecnificada; sin embargo, el uso de agroquímico no incidió en reducir la densidad de la plaga (Figura 1).

En Toronja se presentan dos picos máximos en enero (4 ninfas/brote) y junio (2 ninfas/brote). Sin embargo, la densidad poblacional fue escasa a lo largo del año, debido principalmente a la poca emisión de brotes nuevos por el manejo de la huerta (pocos riegos y fertilización). En contraste, en Limón Persa se presentaron tres picos importantes en el año febrero, mayo y noviembre (4 ninfas/brote) (Figura 2).

Se detectaron diferentes enemigos naturales de *D. citri* como: el parasitoide *Tamarixia radiata* (Waterston) (Hymenoptera: Eulophidae), los depredadores *Chrysoperla rufilabris* Burmeister (Neuroptera: Chrysopidae), *Cycloneda sanguinea* (L.), *Hippodamia convergens* Guérin-Méneville, *Olla v-nigrum* (Mulsant) (Coleoptera: Coccinellidae), *Zelus renardii* (Hemiptera: Reduviidae) y diferentes especies de arañas no identificadas que están presentes durante todo el año (Figura 3). Los enemigos naturales ejercen un control de la plaga y contribuyen a una disminución de aplicaciones químicas. Sin embargo, en un escenario con presencia de HLB, bajas densidades del vector pueden ser un factor de diseminación de la enfermedad como ha ocurrido en Colima y que actualmente se observa en Michoacán.

![Figura 3. Fluctuación poblacional de enemigos naturales de *Diaphorina citri* en cítricos del Valle de Apatzingán (Ago 2008-Jul 2010).](image)

De igual manera, se observó que la asociación de cítricos con otros cultivos favorece la presencia de enemigos naturales y la densidad de la plaga es menor en la asociación Naranja-Mango (0.06 ninfas/brote) y Limón-Maíz (0.16), en comparación a Toronja (0.62 ninfas/brote). Al incrementar la biodiversidad de huertos mediante la presencia de pastos y la asociación de policultivos, se favorece la presencia de enemigos naturales y el manejo agroecológico de plagas. En ambientes diversificados de cítricos se ha constatado un incremento de las especies de crisópidos en el control de *D. citri* (De Freitas y Penny, 2001; Caceres *et al.*, 2002).
Lo cual concuerda con lo observado en este estudio, aun cuando en los huertos monitoreados no se realizaron aplicaciones químicas (Miranda-Salcedo y López-Arroyo, 2009). Con base a este hecho se recomienda que en plantaciones jóvenes de cítricos se asocie con alguna gramínea y se conserve la presencia de pastos entre las hileras con el fin de favorecer el arraigo de enemigos naturales (Altieri, 1994).

Literatura Citada

Actualmente se han publicado varios trabajos, tanto en México como en otras partes del mundo, en los que se reportan estimaciones de resistencia del PAC a ingredientes activos químicos (Tiwari, et al., 2011; 2015; García-Méndez, et al., 2016). Esto detonó la preocupación de un programa de detección de la resistencia asociado a la Campaña contra el HLB y su Vector en México. El uso adecuado de insecticidas permite obtener un control apropiado de la plaga, además evita aplicaciones innecesarias y el desarrollo de resistencia a estos productos. Los insecticidas Citroil y Akaroil pertenecen al grupo toxicológico de los aceites minerales y han sido recomendados para el control del psílido asiático de los cítricos (Diaphorina citri).

El objetivo de esta investigación fue conocer si existen similitudes o diferencias en el comportamiento de dos poblaciones de D. citri Kuwayama (Hemiptera: Liviidae), una proveniente de campo, a la que se le denomina “Colonia Cuitláhuac” y otra, establecida en invernadero, identificada como “Colonia Campus Veracruz” ante la aplicación de dos insecticidas suaves, del grupo toxicológico de los aceites minerales, para determinar la dosis del producto más eficaz en el control del insecto plaga.

Para la presente investigación se utilizaron insectos adultos de ambos sexos del género y especie Diaphorina citri Kuwayama recién emergidos de una población
que no ha sido expuesta a insecticidas, establecida en el invernadero del Colegio de Postgraduados Campus Veracruz, y una población de campo ubicada en el municipio de Cuitláhuac, Veracruz.

Se determinaron los valores de Dosis Letal Cincuenta (DL$_{50}$) de Citroil y Akaroil en adultos de dos diferentes colonias de este insecto. La colonia establecida en un invernadero del Colegio de Postgraduados, Campus Veracruz, ubicado entre las coordenadas (19°31′45″ N y 96°55′13″ O), que no ha sido expuesta a insecticidas por más de cinco años. La colonia de campo fue colectada en huertas de lima Persa bajo constante aplicación de diferentes insecticidas, en el municipio de Cuitláhuac, Veracruz, ubicado en las coordenadas (18° 48’ 42″ N y 96° 43’ 22″ O). Se utilizó un bioensayo tópico descrito por Tiwari et al. (2011) en adultos de D. citri con el insecticida disuelto en acetona. El testigo sólo recibió acetona. Se utilizaron 120 insectos por dosis en cinco repeticiones. Se obtuvieron las líneas de regresión logaritmo dosis-Probit con la mortalidad corregida a cada dosis utilizada.

Para la elaboración de los bioensayos, se hicieron cinco repeticiones (R) y un testigo (T) por repetición, al que solo se le aplicó acetona. Se durmieron los insectos con CO$_2$ para facilitar la aplicación del producto, se utilizaron 120 insectos por cada dosis según las recomendaciones (Robertson et al., 1984). Para el testigo se extrajo acetona y se dejó caer una gota en el pronoto del insecto. De igual forma se aplicó el insecticida en las R1, R2, R3, R4 y R5, esta acción se realizó para las distintas dosis de ambos productos. Por último, se dejaron las cajas de Petri con los insectos ya aplicados en la cámara de cría durante 24 h. Posteriormente se hizo la lectura, donde se anotaron los datos de mortalidad en el formato. Los datos finales se anotaron en la hoja Probit.

Se llevó a cabo un análisis del comportamiento de la mortalidad de D. citri ante Citroil y Akaroil con la finalidad de obtener resultados y observar diferencias entre los dos insecticidas.

La Dosis Letal media (DL$_{50}$) es la dosis que produce el efecto deseado en el 50% de la población de insectos. Con base en las DL$_{50}$ de Citroil y Akaroil, se determinó que no existen diferencias de susceptibilidad en ambas colonias. Sin embargo,
resaltó que se requirieron dosis muy por encima de las recomendadas para lograr mortalidades superiores al 80%, lo cual confirma que estos productos no deben ser recomendados como insecticidas dirigidos a adultos (Cuadro 1 y Figura 1)

Cuadro 1. Comparación de las DL50, entre las colonias “Campus Veracruz” y la “Colonia Cuitláhuac”. DL50 = Dosis letal 50 (mg/La unidade de insecto-1). LF = límite fiducial o confianza al 95%. FR = Factor de Resistencia.

<table>
<thead>
<tr>
<th>Insecticida</th>
<th>Población</th>
<th>DL50</th>
<th>FR</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITROIL</td>
<td>Campus-Veracruz</td>
<td>7.25%</td>
<td>0.55</td>
<td>6.44320-8.13640</td>
</tr>
<tr>
<td></td>
<td>Cuitláhuac</td>
<td>4.03%</td>
<td>X</td>
<td>2.28370-6.45652</td>
</tr>
<tr>
<td>AKAROIL</td>
<td>Campus-Veracruz</td>
<td>5.29%</td>
<td>0.77</td>
<td>3.77634-7.55520</td>
</tr>
<tr>
<td></td>
<td>Cuitláhuac</td>
<td>4.11%</td>
<td>X</td>
<td>3.21600-5.33281</td>
</tr>
</tbody>
</table>

Figura 1. Susceptibilidad de adultos de *D. citri* a CITROIL y AKAROIL.

Análisis Estadístico. La línea de respuesta log dosis-Probit, así como los valores de la DL50, los límites de confianza al 95% y el factor de resistencia (FR), se obtiene mediante el procedimiento Probit del programa SAS 9.2 (SAS Institute Inc., 2009. El FR sirve para comparar una población de referencia que es susceptible, con otra que se requiere monitorear por sospecha de que puede haber desarrollo de resistencia, Indica cuántas veces es más tolerante o resistente el insecto a dicha sustancia, a la DL50.
Los valores del FR a 50% de mortalidad se obtienen a dividir la DL50 de la población de campo entre la DL50 de la colonia susceptible. Las respuestas de las poblaciones comparadas no se consideran significativamente diferentes cuando los límites de confianza se traslapan (Robertson y Preisler, 1992).

Se presenta la comparación de la respuesta de la aplicación de Citroil y Akaroil a insectos adultos colectados en ambas colonias. Cabe aclarar que la formulación de estos dos aceites minerales es bastante diferente como se muestra en las fichas técnicas

Los aceites minerales Citroil y Akaroil no son adecuados como insecticidas para el control de adultos de *D. citri*. Las diferencias en susceptibilidad o resistencia entre colonias de insectos de campo e invernadero no son tan amplias, como para ser responsables de la reducción en mortalidad del insecto.

Literatura citada

Tiwari, S., B. Liu, R. S. Mann, N. Killiny, & L. L. Stelinski. 2015. Effects of cold-acclimation, pathogen infection, and varying temperatures on insecticide susceptibility, feeding, and detoxifying enzyme levels in *Diaphorina citri* (Hemiptera: Liviidae). Florida Entomol. 98: 870-879.

RESISTENCIA DE Diaphorina citri (HEMIPTERA: LIVIIDAE) A INSECTICIDAS EN ÁREAS REGIONALES DE CONTROL EN MÉXICO.

Víctor Hugo García-Méndez¹, Laura Delia Ortega Arenas¹*, Juan Antonio Villanueva-Jiménez² y Francisco Osorio-Acosta²

¹Colegio de Postgraduados Campus Montecillo, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, México
²Colegio de Postgraduados Campus Veracruz, Km 88.5 Carretera Xalapa-Veracruz, Manlio Fabio Altamirano, Veracruz, México

*Autor de correspondencia: correo ladeorar@colpos.mx

El psílido asiático de los cítricos (PAC), Diaphorina citri (Hemiptera: Liviidae) Kuwayama, es considerado la plaga más importante de los cítricos debido a que es el vector de la bacteria causante del huanglongbing (HLB) (Halbert y Manjunath, 2004), la cual disminuye la producción de cítricos (Robles-González et al., 2013). Por lo anterior, el control químico del vector es una de las estrategias que tienen como objetivo evitar la dispersión de la enfermedad, en México esto se establece en el programa Áreas Regionales de Control (ARCO) del PAC y el HLB (Mora-Aguilera et al., 2016).

Actualmente se tiene documentada resistencia de D. citri a insecticidas organofosforados, piretroides y neonicotinoides en los principales Estados citrícolas de México (Vázquez-García et al., 2013; García-Méndez et al., 2016), pero se desconoce la resistencia presente en las ARCO establecidas en diferentes regiones de la república.
Por tanto, el presente estudio tuvo como objetivo evaluar el estado de la resistencia en cinco ARCOs en México, tres en Veracruz (Álamo, Cuitláhuac y Martínez de la Torre), una en Colima (Tecomán) y otra en Michoacán (Buenavista). La colonia de *D. citri* del Colegio de Postgraduados (COLPOS) Campus Montecillo en Texcoco, se utilizó como la susceptible de referencia, ésta es originaria de Cazones, Veracruz y desde 2009 se ha criado sin exposición a plaguicidas.

Los productos que se evaluaron fueron Confidor (imidacloprid 35 %) Bayer, Dimetoato 400CE (dimetoato 38%) Gowan, Lorsban (clorpirifos 44.5%) Dow AgroSciences y Supremo (cipermetrina 21.5 %) UnitedPhosphorus, éstos se diluyeron hasta el 1% en agua destilada y para concentraciones inferiores se hicieron diluciones con acetona grado técnico.

La aplicación de los tratamientos se realizó de forma tópica de acuerdo a lo descrito por Coy *et al.* (2016). La determinación de las líneas base de susceptibilidad en la población COLPOS y la conducción de los bioensayos se realizó de acuerdo a García-Méndez *et al.* (2016). El análisis estadístico se realizó con el software estadístico PoloPlus (LeOra Software, 2006), con el cual se estimaron las DL$_{50}$ de cada insecticida con sus respectivos límites de confianza (LC) al 95%. La DL$_{50}$ de una población de ARCO fue estadísticamente diferente si sus LF se traslaparon con los de COLPOS. El nivel de resistencia presente se determinó mediante la Resistencia Relativa (RR) que se determinó al dividir las DL$_{50}$ de la población de ARCO entre la del COLPOS.

En comparación con una población susceptible, todas la poblaciones fueron susceptibles a imidacloprid (RR= 1-2X). Los insectos presentes en la ARCO de Martínez de la Torre mostraron los niveles de resistencia más altos a cipermetrina (RR= 11.55X), clorpirifos (83.25X) y dimetoato (RR= 79.72X), la RR a cipermetrina en dicha población fue la misma que en la ARCO de Tecomán (RR= 12X), sin embargo, en ésta no hubo resistencia a clorpirifos (RR= 1.85X) ni a dimetoato (RR= 1X).
En las ARCO de Álamo y Buenavista no se mostró resistencia a cipermetrina (RR= 1 y 2.72X, respectivamente) y se presentó el mismo nivel de resistencia a los dos organofosforados (RR= 11X y 6.26X para clorpirifos; RR= 9.12X y 11X para dimetoato). Por otro lado, los valores de resistencia en la ARCO de Cuitláhuac (RR= 5X para cipermetrina, 20.85X para clorpirifos y 3.2X para dimetoato) fueron heterogéneos y diferentes las demás ARCO evaluadas.

En el presente estudio se logró documentar la existencia de resistencia a los principales ingredientes activos utilizados para el control del PAC en las ARCO de México; la resistencia varió dependiendo del insecticida y ARCO evaluada.

Imidacloprid mostró toxicidad a dosis bajas en todas las poblaciones independientemente de su origen geográfico. Sin embargo, Vázquez-García et al. (2013) indican que la resistencia a este ingrediente activo puede desarrollarse rápidamente y a niveles altos (RR= 4265X) si su uso es constante o no se realiza una adecuada rotación.

Una buena alternativa de rotación en las ARCO es cipermetrina, si bien se presentaron niveles de resistencia, Coy et al. (2016) mencionan que el uso previo de imidacloprid seguido por cipermetrina, permite disminuir hasta 50% la resistencia al piretroide, haciéndolo un producto efectivo para su aplicación en áreas amplias.

Los organofosforados mostraron en las poblaciones de las ARCO de Veracruz y Michoacán RR desde 3.2X hasta 83.25X, por lo cual se puede considerar su uso restringido para el control del PAC en la ARCO de Tecomán. Coy et al. (2016) en estudios de susceptibilidad en Florida reportaron que, a pesar de contar con un control de aplicaciones de este producto en áreas amplias, aumentó cuantitativamente el nivel de resistencia a clorpirifos y dimetoato.

El panorama expuesto muestra la importancia que tienen los estudios de susceptibilidad para proveer información sobre la susceptibilidad y resistencia del PAC en diferentes poblaciones a diferentes grupos toxicológicos, los cuales pueden
ser utilizados para la toma de decisiones para el control químico del PAC dentro de las ARCO en México.

Literatura Citada

Le Ora Software. 2016. PoloPLUS: probit and logit Analysis v.2.0. LeOra Software. California, USA.

PARÁMETROS POBLACIONALES DE *Dactylopius opuntiae* (HEMIPTERA: DACTYLOPIIDAE) EN CONDICIONES DE INVERNADERO.

Patricia E. López-Rodríguez¹, Santiago de Jesús Méndez-Gallegos ²*, Gildardo Aquino-Pérez¹, Jaime Mena-Covarrubias², Juan M. Vanegas-Rico ³

¹Posgrado de Innovación en Manejo de Recursos Naturales, Colegio de Posgrados, *Campus* San Luis Potosí, Iturbide #73, CP. 78622, Salinas de Hidalgo, San Luis Potosí, México.

³Postgrado en Entomología y Acarología, Colegio de Postgraduados, *Campus* Montecillo, 56230 Texcoco, Estado de México, México.

Autor de correspondencia: correo jmendez@colpos.mx

El nopal (*Opuntia* spp) es uno de los recursos vegetales con una amplia distribución geográfica, y de una gran importancia socioeconómica, forrajera, alimenticia, ambiental, farmacológica e industrial (Torres-Ponce, *et al*., 2015). Actualmente, su producción se ha extendido a los cinco continentes y está presente en más de 30 países, donde se cultiva con diferentes fines (Ochoa & Barbera, 2017). A nivel nacional e internacional la cochinilla silvestre *Dactylopius opuntiae* es considerada el principal enemigo del nopal (Mena-Covarruvias, 2013; Vanegas-Rico *et al*., 2016; González, *et al*., 2016), debido a la severidad de sus daños y las pérdidas económicas que provoca. En otros países se han realizado estudios para conocer su biología, comportamiento y crecimiento poblacional; pero en México a pesar de su importancia, existen pocas investigaciones sobre esta especie. A pesar de la relevancia económica de sus daños, no existe información sobre su comportamiento y dinámica poblacional, que permitan implementar una estrategia de manejo; considerando lo anterior el objetivo de la investigación se dirigió a determinar la etología, y estimar la supervivencia y reproducción de *D. opuntiae* en condiciones...
semicontroladas, a fin de generar información básica que permita implementar una estrategia de manejo y reducir su impacto nocivo.

Para conocer el ciclo de vida y parámetros poblacionales de *D. opuntiae*, se establecieron cohortes en cladodios individuales de *Opuntia ficus-indica* cv. Villanueva, los cuales se monitorearon de septiembre a noviembre del 2017. Durante su ciclo de desarrollo se registró la supervivencia (l_x), la proporción sexual ♀/♂ y la fertilidad de hembras adultas (m_x). Los resultados obtenidos mostraron que las hembras de *D. opuntiae* presentan una alta probabilidad de llegar al estado adulto, dado que en promedio 62.7% de los individuos sobreviven a esta etapa. Asimismo, se observó que la etapa más susceptible del insecto corresponde a los primeros 20 días de desarrollo. El tiempo de generación (T) fue de 63.52 días, la tasa neta de reproducción (R_o) fue de 27.07, expresada en el número hembras recién nacidas por hembra, y la tasa intrínseca de crecimiento poblacional (r_m), que se refiere al número de hembras por hembra por día fue de 0.05 hembras d^{-1}. Esto indica que la población se incrementa 27.07 veces cada 63.52 días. Debido a este potencial reproductivo del insecto, le permite colonizar rápidamente la planta y convertirse en un fitófago potencialmente importante en todas las zonas donde *Opuntia* está presente, ya sea de manera silvestre o cultivada.

Literatura Citada

Entre los factores que limitan o afectan la cadena productiva del mango están las plagas y destacan las moscas de la fruta. En México, se cultivan más de 190,000 ha. de mango con una producción aproximada de 1.8 millones de toneladas. En Michoacán existe una superficie de 25,000 ha y una producción de 150,000 t (SIAP, 2018). Las moscas de la fruta son consideradas de interés público y por ello existe la Campaña Nacional contra Moscas de la Fruta (Aluja, 1994). Una de las primeras acciones para el control de las moscas de la fruta, es el uso de un sistema de monitoreo por medio de trampas para detección de adultos y se utilizan proteínas hidrolizadas (Reyes et al., 2000). Sin embargo, una desventaja de estas proteínas es el bajo rango de capturas de adultos y la captura de insectos no blancos. Dentro del manejo integrado se incluye la Técnica del Insecto Estéril y la aplicación de insecticidas cebo (Mangan y Moreno, 2007), ambas son indispensables en los planes de erradicación o supresión de la plaga, pero actualmente el uso de insecticidas como el Malatión ha sido ampliamente cuestionado. Por esta razón se
han desarrollado productos alternativos como el Phloxine B (Moreno et al., 2001), el Lufenuron (Navarro-Llopis et al., 2004) y el Spinosad (Mangan et al., 2006). Estas alternativas combinadas con el uso de “Estaciones cebo” representan una opción donde no es posible aplicar algún cebo tóxico y ser compatible con otras estrategias de control más amigables, como bioinsecticidas y liberaciones de parasitoides. Los objetivos del estudio fueron evaluar la densidad óptima de estaciones cebo por hectárea, su efecto en la reducción del índice de Mosca-Trampa-Día y el porcentaje de frutos dañados. Además, de identificar las especies capturadas, su sexo y porcentajes de parasitismo. Esto permitirá a los productores de mango reducir el nivel de daño económico por moscas de la fruta y acceder a los mercados de exportación que no permiten frutos con larvas.

El estudio se realizó en La Gallina, municipio de Gabriel Zamora en dos huertas de mango Haden de 2 hectáreas cada una. Los tratamientos evaluados fueron: 1) Estación Cebo Vitrolero tipo Montemorelos 100 por hectárea (EC-I) y 2) Control no se colocó ninguna estación cebo (EC-II). Para el monitoreo de moscas de la fruta, se colocaron dos trampas Multilure por hectárea cebadas con 250 ml. de propilen-glycol al 20% más un parche de Biolure (acetato de amino + putrecina) y estas se revisaron cada semana. Los especímenes capturados se guardaron en frascos con alcohol al 70%. El índice MTD (Mosca-Trampa-Día), determina el nivel de infestación y se obtiene dividiendo el total de moscas capturadas entre el número de trampas por el número de días que estuvieron expuestas (M/TxD). Para determinar el porcentaje de frutos dañados cada semana se colectaron frutos maduros. La muestra fue pesada y los frutos colocados en cajas de unicel por siete días. Las larvas que se obtuvieron fueron cuantificadas. Como índice de infestación se consideró el número de larvas por fruto, por kg y el porcentaje de frutos dañados. Las larvas obtenidas se colocaron en medios de pupación (vasos de plástico de 10 x 5 cm con tierra húmeda), hasta la emergencia de adultos. En caso de emergir parasitoides se cuantificó el parasitismo natural (número de parasitoides obtenidos entre el número de moscas y parasitoides x 100).

Las estaciones cebo son una alternativa biorracional en el control de moscas de la fruta (Marín, 2010). En este estudio demostraron alta efectividad en la captura de
moscas de la fruta: 1564 moscas (EC-I) y 546 moscas (EC-II). En la huerta orgánica se aplicó nim y extracto de ajo (EC-I) y en la huerta convencional (EC-II) se realizaron dos aplicaciones con malation. La proporción sexual de los especímenes capturados, estuvo sesgada hacia las hembras. En la huerta (EC-I), en A. ludens 1.97 hembras: 1 macho y A. obliqua 2.77 h: 1 m. En la EC-II en A. ludens 1.67 h: 1 m y en A. obliqua 2.1 h: 1 m. De los Santos et al. (2012) obtuvieron resultados similares con A. ludens, al capturar un 59% de hembras y un 41% de machos. Resultados similares son citados por Piñero et al. (2002) y Lasa et al. (2013).

El porcentaje de frutos dañados fue del 12% (EC-I) y 13% (EC-II). Mientras que en el área marginal (mangos criollos) fue del 39% (Figura 1). Los mangos criollos son los hospederos más susceptibles y un reservorio de moscas de la fruta. En 2014 en la huerta orgánica (EC-I) se colocaron 100 estaciones cebo tipo Vitrolero por hectárea, mientras que en la huerta convencional no se colocaron estaciones cebo.

A diferencia del 2013, el porcentaje de frutos dañados fue menor 1.5% Vitrolero, 2.02% Testigo y 5.79% en el área marginal (Figura 2). Estos resultados son muy promisorios, ya que el uso de las Estaciones Cebo tipo Vitrolero son una alternativa biorracional y eficiente en el control de moscas de la fruta, aún en una zona de alta infestación en donde se reporta el 80% de los lotes con larva en Michoacán.

Literatura Citada

DISTRIBUCIÓN ESPACIAL DE *Eoreuma loftini* (DYAR, 1917) (LEPIDOPTERA: CRAMBIDAE) EN CAÑA DE AZÚCAR EN REGIÓN CENTRO DEL ESTADO VERACRUZ.

Blas Schettino Salomón¹, Obdulia L. Segura-León¹*, Francisco-Hernández-Rosas², Marisol Cruz-Tobón², Isidoro Arellano Méndez³.

²Colegio de Postgraduados Campus Córdoba. Km 348 Carretera Federal Córdoba-Veracruz, congregación Manuel León. Municipio de Amatlán de los Reyes, Ver. C.P 94946.

*Autor de correspondencia: correo sleon@colpos.mx

El cultivo de caña de azúcar se ve afectado por un complejo de barrenadores lepidópteros del género *Diatraea* y la especie *Eoreuma loftini* (MRB), que están considerados entre los principales problemas fitosanitarios, en varias regiones productoras. Información sobre la distribución y abundancia de *E. loftini* en México,
es limitada a pequeñas áreas en Tamaulipas y Morelos, sin que hasta el momento se tenga información de su presencia en la zona de región centro del estado de Veracruz. Por lo que en este trabajo se propuso conocer la distribución y abundancia de *E. loftini* en ésta zona, con el uso de su feromona sexual. Inicialmente se colocaron 53 trampas tipo ala cebadas con la feromona sexual de *Eoreuma loftini* durante los meses de febrero-abril 2018, en parcelas cercanas a las vías de comunicación de: Atoyac-Paso del Macho (1), Paso del Macho-Cuitláhuac (2) y Cuitláhuac-Amatlán de los Reyes (3), que incluyen las zonas de abasto de los ingenios Central El Potrero y Central Progreso. En promedio se colocaron 17 trampas en cada área y la distancia entre éstas fue de aproximadamente 750m. La captura se evaluó cada 15 días y la feromona se remplazó cada 30 días. Los resultados señalan que *E. loftini* se distribuye en toda la zona, sin embargo, existe variación en el patrón de distribución. Se registraron diferencias en el número de capturas por trampa y por zona; la mayor captura fue 45 palomillas p/t, en tanto que en algunas no hubo registros, la zona con el mayor número de capturas fue: Atoyac-Paso del Macho con una total de 359 palomillas, seguida de 44 en (2) y 33 en (3). Por lo que con la información que se ha generado se pueden generar estrategias de manejo específicas para cada zona.

**SITUACIÓN ACTUAL DEL PULGÓN AMARILLO DEL SORGO *

Melanaphis sacchari (ZEHNTNER) (HOMOPTERA: APHIDIDAE) EN LA REGIÓN LAGUNERA.

García-González Fabian\(^1\)*; Ramírez-Delgado Manuel\(^2\)

*Autor de correspondencia: correo fabiangglez@chapingo.uruza.edu.mx

A raíz de la aparición del pulgón amarillo del sorgo (PAS) en 2014, a nivel nacional el cultivo de este importante forraje se ha reducido de 235,955.7 ha en 2013 a 169,142.2 ha en 2016, mientras que en la Región Lagunera, en 2016 se redujo de 30,335.05 ha sembradas en 2014 a solamente 7,178 ha (SIAP, 2013-2017; El Siglo
de Torreón, 2015-2017). Se han llevado a cabo diferentes acciones y estudios de investigación encaminados a reducir los daños y pérdidas en calidad y rendimiento ocasionados por esta plaga emergente. En esta escrito se muestran algunos de los resultados más sobresalientes de estas actividades, con el fin de hacer un balance de lo que se ha hecho y lo que faltaría por hacer; las actividades incluidas son las siguientes: en 2015 se hizo un recorrido por ingenieros de las Juntas Locales de Sanidad Vegetal de Coahuila y Durango en los municipios de ambos estados con mayor superficie sembrada de sorgo forrajero, evaluándose daños, distribución y acciones por tomar en conjunto con autoridades locales y federales de sanidad vegetal; el mismo año, personal del Campo Experimental la Laguna-INIFAP, llevó a cabo un recorrido en diferentes predios con sorgo forrajero en los municipios de Torreón, Matamoros, Francisco I. Madero y San Pedro de las Colonias del estado de Coahuila, determinando niveles de infestación y presencia de posibles enemigos naturales; antes de finalizar el 2015, se evaluaron insecticidas contra el PAS, los cuales habían sido previamente evaluados en la región sorguera de Tamaulipas con excelentes resultados de control de esta plaga, en dicha evaluación se incluyeron otros productos que también pudieran tener buen control; en el ciclo Primavera-Verano de 2016 se determinó la fluctuación poblacional y parasitismo natural del PAS bajo condiciones de cero aplicaciones de agroquímicos.

De los muestreos y recorridos realizados por personal de las Juntas Locales de Sanidad de Coahuila y Durango en conjunto con representantes federales de Sanidad Vegetal, a partir de enero del 2015, se supervisó el 70% de la superficie sembrada en el ciclo (7,110 ha), determinándose que el primer brote del PAS se presentó el 13 de mayo en una parcela de sorgo de 10 ha de la Localidad Santender del Municipio de Gómez Palacio, Durango, concluyeron al final de los recorridos que el PAS se presentó en 15 localidades de los municipios de Gómez Palacio, Lerdo, Mapimí, Nazas y Tlahualillo, Durango y se determinó que el 100% de la superficie (20,500 ha) con sorgo, estuvo infestada por esta plaga con diferentes niveles de daño. En reunión llevada a cabo después del trabajo de campo, se tomaron los
siguientes acuerdos: a) Monitoreo y muestreo regional (Municipios de la Región Lagunera de Coahuila y Durango) para determinar el grado real de infestación y distribución de la plaga; b) Implementación de un buen manejo del cultivo (fertilización, riegos y labores culturales); c) Manejo de la Soca (Destructión o manejo integrado); d) Muestreo, identificación y evaluación de enemigos naturales; e) Evaluación de insecticidas y bioinsecticidas contra pulgón amarillo y su efecto en la fauna benéfica.

En junio de 2015, personal de INIFAP-Laguna realizó un recorrido en predios de sorgo de cinco localidades de los municipios de San Pedro de las Colonias, Fco. I. Madero y Matamoros, Coahuila, con el fin de conocer y verificar la presencia del PAS en la Laguna de Coahuila. Se registraron los promedios de pulgones por planta en cada uno de los predios muestreados, con valores de 28,5 pulgones en el predio Tacubaya, San Pedro de las Colonias hasta 978,7 pulgones por planta en el Ejido Compuertas en el municipio de Fco. I. Madero; se aprecia que en todos los predios, con excepción del de Tacubaya, rebasaron el umbral económico establecido para esta plaga que es de 50 pulgones/hoja; la proporción de pulgones: depredadores fue desde 1:1 (un pulgón por cada depredador) hasta 49:1, lo cual indica que en predios con mayor presencia de depredadores, como Tacubaya, La Rosita y Presa de Guadalupe, regulan de una manera más eficiente la población del PAS, en cambio en los predios de Compuertas y Corona, la menor proporción de estos enemigos naturales, permite que la población de la plaga se incremente.

Las especies de depredadores observados fueron principalmente: huevos y larvas de crisopas, larvas de mosca sírfida, larvas y adultos de la catarinita Hippodamia convergens, chinche asesina, chinche pirata, chinche ojona y escarabajo Collops. Durante el ciclo de otoño del 2015 en la Región Lagunera del estado de Durango, se evaluaron ocho insecticidas contra pulgón amarillo del sorgo y se muestrearon algunos de los materiales de sorgo sembrados en la región. Se observó buen control de los insecticidas Actara, Confidor, Movento, Toretto, Plenum, Beleaf y Sivanto contra el Pulgón amarillo del sorgo hasta los 14 DDA. El testigo comercial a base
de Dimetoato, también tuvo buen control del pulgón amarillo del sorgo, excepto a los 14 DDA que se incrementa por encima del umbral económico. Los insecticidas evaluados Actara, Confidor, Movento, Toretto, Plenum, Beleaf, Sivanto y Dimetoato, no mostraron una mortalidad significativa contra depredadores y especies de posibles parasitoides del pulgón amarillo del sorgo hasta los 14 DDA. No se apreció un efecto significativo de los ocho insecticidas evaluados contra las otras especies plaga del sorgo colectadas en este estudio (trips, pulguita saltona, chicharritas y diabróticas). La presencia de pulgón amarillo del sorgo, otras plagas y enemigos naturales en los materiales de sorgo sembrados en la región Lagunera de Durango, fue baja. Se sugiere evaluar estos mismos insecticidas e incluir otros tratamientos, durante el periodo primavera-verano y en la soca de esa misma siembra del 2016, con condiciones de mayor densidad del pulgón amarillo del sorgo. Así mismo incluir nuevamente el monitoreo del pulgón amarillo del sorgo, otras plagas y enemigos naturales en los diferentes materiales de sorgo de la región Lagunera de Durango.

Un estudio de fluctuación poblacional y parasitismo natural del pulgón amarillo del sorgo en la Región Lagunera, sin aplicaciones de agroquímicos, se efectuó en 2016. Se revisaron pulgones totales, pulgones ápteros, pulgones alados y pulgones parasitados durante el periodo del 15 de julio al 21 de septiembre, apreciándose su presencia desde el primer muestreo el 15 de julio, a los 35 días después de la siembra (DDS), con un promedio de 61.8 pulgones por hoja, incrementándose a 66.8 pulgones en el muestreo del 20 de julio, la mayor densidad promedio se registró en el tercero y cuarto muestreos, con 404.6 y 375.1 pulgones por hoja, respectivamente. Durante el muestreo del 10 al 31 de agosto, hubo un periodo de lluvias intensas, que redujeron la presencia del pulgón a densidades promedio menores a cuatro pulgones por hoja. Al dejar de llover, la población se incrementó gradualmente de 7 hasta 46.4 pulgones por hoja. Los pulgones ápteros representaron el mayor porcentaje en cada muestreo. Los adultos alados se presentaron en valores promedio menores a 50 pulgones por hoja, mientras que los pulgones parasitados tuvieron promedios menores a 30 pulgones por hoja en los
muestreos del 1 y 5 de agosto, después de esta fecha, la densidad de pulgones alados y pulgones parasitados se redujo a valores promedio menores a 1.0 por hoja. La presencia de enemigos naturales depende de la existencia de presas, lo que se conoce como denso-dependencia, como se aprecia claramente el 1 y 5 de agosto con poblaciones altas de pulgón amarillo, es también cuando se observa la mayor densidad de pulgones parasitados.

Respecto al porcentaje de parasitismo natural, los valores más altos se estimaron en los muestreos del 10 y 17 de agosto, con 97.8 y 100.0%, respectivamente, sin embargo, en estas fechas la densidad de pulgones en las 25 hojas fue muy baja, contrastando con los porcentajes de los muestreos del 1 y 5 de agosto, donde hubo poblaciones superiores a los nueve mil pulgones en 25 hojas. Del 24 de agosto hasta el último muestreo realizado el 21 de septiembre, los porcentajes de parasitismo se redujeron significativamente a valores de 0 a 0.5%, debido a la baja en densidad de pulgones amarillos por causa del periodo de lluvias ya señalado.

Propuestas a corto y mediano plazo. Búsqueda de líneas o variedades con tolerancia o resistencia contra PAS; evaluación constante de insecticidas sintéticos y sobre todo bioplaguicidas; identificación de parasitoides y depredadores naturales eficientes, con fines de su multiplicación en laboratorio para liberaciones masivas en campo.

Literatura citada

COMPARACIÓN DE SÍNTOMAS DE LA LEPROSIS DE LOS CÍTRICOS EN DIFERENTES ESPECIES CITRÍCOLAS EN MÉXICO.

René Gómez-Mercado¹, M. T. Galicia-Santillán.¹*, A. W. Guzmán-Franco¹, A. Macedo-Cruz², S. Guzmán-Valencia¹ & P. L. Robles-García³
La leprosis de los cítricos es una enfermedad viral transmitida por ácaros del género *Brevipalpus*. Esta afecta hojas, ramas y frutos donde inducen lesiones necróticas o cloróticas localizadas alrededor de los sitios de alimentación (Roy *et al*., 2015). Por otro lado, la producción y el valor comercial del cultivo se reducen con pérdidas económicas que pueden ascender a varios millones de dólares al año, y provocar la muerte de plantas cuando no se toman medidas de control del ácaro vector (Rodríguez, 2000; Goes *et al*., 2002; Bastianel *et al*., 2010; Roy *et al*., 2015).

En México, la leprosis de los cítricos está asociada a diferentes agentes causales, se tiene reportada la presencia del virus de la leprosis de los Cítricos tipo Citoplasmático (CiLVC), y el Orchid fleck virus (OFV) con sus dos variantes, el virus de la leprosis de tipo nuclear (CiLV-N) y el Virus de la Mancha Necrótica de los Cítricos (CNSV)) [Roy *et al*., 2014; Ramos-González *et al*., 2016]. Durante la replicación, estos virus inducen malformaciones celulares nucleares o citoplasmáticas, distinguiendo dos formas de la enfermedad: los tipos nuclear y citoplásmico, respectivamente. Estas dos características son las más utilizadas para diferenciar los agentes causales de la leprosis de los cítricos (Ramos-González *et al*., 2016).

El virus de la leprosis de los cítricos causa lesiones en hojas, ramas y frutos, especialmente en árboles de naranja dulce; sin embargo, los síntomas pueden variar de acuerdo al tipo de planta hospedante, estado de desarrollo y tipo de virus (León *et al*., 2006). Motivo por el cual, el objetivo de este trabajo fue encontrar si existe alguna relación entre tipo de síntomas, con la especie de cítrico hospedante y la presencia de uno o más virus del complejo de la leprosis.
Se recolectaron 100 muestras compuestas de hojas con síntomas (seis por muestra) en cinco huertos en cada uno de los siguientes estados: Campeche, Chiapas, Jalisco, Hidalgo, Oaxaca, Quintana Roo, Tabasco, Sinaloa, Veracruz y Zacatecas. Todas las hojas fueron lavadas con agua corriente y enjuagadas con agua destilada; posteriormente, las lesiones fueron clasificadas en ocho categorías (Figura 1). Cada grupo fue digitalizado con un escáner HP Deskjet 1500 a una resolución de 600 ppp para posteriormente realizar un análisis de refractancia. De cada una de las muestras, se guardó tejido vegetal en tubos Eppendorf estériles de 2 mL de capacidad conteniendo 1 mL de RNA Later™ y se almacenaron a -20°C hasta su uso.

<table>
<thead>
<tr>
<th>Síntoma 1</th>
<th>Síntoma 2</th>
<th>Síntoma 3</th>
<th>Síntoma 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Síntoma 5</td>
<td>Síntoma 6</td>
<td>Síntoma 7</td>
<td>Sin síntomas 8</td>
</tr>
</tbody>
</table>

Figura 1. Categorías de síntomas de la leprosis de los cítricos en diferentes hospederos.

Se realizó la detección de los virus CiLVC, CiLVN, CNSV y OFV en cada una de las hojas. Para esto, primeramente, se extrajo el ARN de las hojas con el kit RNeasy Plant Mini Kit (Quiagen). Posteriormente, la detección de los virus se obtuvo mediante reacciones de transcriptasa reversa (RT) y PCR (Locali et al. 2003; Roy et al., 2014; Cruz-Jaramillo et al., 2014; Ali et al., 2014).
Los resultados que se tienen hasta el momento indican una mayor presencia del virus CNSV con un 75% de muestras positivas a este virus, seguido por CiLVC con un 70%, CiLVN con un 16% y OFV con 15%. También se encontraron muestras positivas a dos virus por hoja, con un 38% de positivos a CiLVC+CNSV, 15% a CiLVN+CNSV, 14% a OFV+CNSV, 11% a CiLVN+OFV, 9% a CiLVC+CiLVN y 6% a CILVC+CNSV. Por otro lado, y en menor proporción, también se encontraron muestras con tres virus por hoja, con un 11% para CiLVN+CNSV+OFV, 9% para CiLVC+CiLVN+CNSV y 6% para CiLVC+CiLVN+OFV; y finalmente un 6% de las muestras dio positivo a los cuatro virus.

Respecto a la relación entre síntomas y tipo de virus presente, nuestros resultados no muestran una tendencia entre los virus detectados con los síntomas; sin embargo, se observó cierta relación entre los síntomas tipo 1, 3 y 6 (Fig 1) con la detección de los cuatro virus simultáneamente. Interesantemente, hojas sin síntomas también dieron positivas a CiLVC y CNSV (Figura 2). Actualmente se está realizando el análisis de refractancia, el cual consideramos que nos permitirá hacer conclusiones más sólidas con respecto a las relaciones que se están estudiando.
Literatura citada:

INCIDENCIA DE DAÑO DE *Aculops lycopersici* (TROMBIDIFORMES: ERIOPHYIDAE) Y SU REDUCCIÓN DEL RENDIMIENTO EN TRES VARIEDADES DE JITOMATE.

Everardo López-Bautista¹, Néstor Bautista-Martínez¹*, Javier Suárez-Espinosa¹, Ma. Teresa Santillán-Galicia¹, Hiram Bravo-Mojica¹, Rafael Pérez-Pacheco³

¹Colegio de Postgraduados, Montecillo, Texcoco, Estado de México.

²Universidad Autónoma de Sinaloa, Facultad de Agricultura del Valle del Fuerte. Ahome, Sinaloa.

³Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Instituto Politécnico Nacional. Santa Cruz Xoxocotlán, Oaxaca.

*Autor de correspondencia: correo nestor@colpos.mx

Introducción

TRM es muy difícil de observar por su tamaño (0.1 a 0.2 mm), percatándose de su presencia cuando los síntomas son evidentes, y en ese momento, su incidencia es alta (Kay, 1986; Saini y Alvarado, 2001 y Navarro, *et al.*, 2011); en ese sentido, es
necesario conocer la incidencia de daño, en frutos, de *Aculops lycopersici*, y su reducción en el rendimiento de tres variedades de jitomates

La investigación se realizó en un invernadero del Colegio de Postgraduados, Texcoco, Estado de México. Se sembraron tres variedades de jitomate saladette (V305 F1, Cid y Sun 7705). El diseño experimental fue bloques completos con tratamientos aleatorizados. Para la unidad experimental se tomaron al azar 10 plantas, de los estratos inferior, medio y superior, con tres repeticiones por variedad. Se evaluó lo siguiente: 1. Índice de frutos dañados, surgió de dividir los frutos totales, del racimo elegido al azar, entre los frutos dañados (daño superior a 20%). 2. Índice de frutos útiles, se dividieron los frutos totales, del racimo elegido al azar, entre los frutos útiles por racimo (frutos con menos del 20% de daño). 3. Peso promedio por fruto útil, se pesó el total de los frutos útiles, y el resultado se dividió entre el número de frutos útiles, y 4. Densidad de infestación, se realizó a través de un conteo de *A. lycopersici* presentes en un cm²/fruto dañado, con una lupa de campo de 10X.

Se realizó un análisis de varianza con submuestreo, con modelo lineal general y prueba de comparación de medias de Tukey (α=0.05) con SAS. v9.4.

Índice de frutos dañados. Los resultados del análisis de varianza indican (PR>F, 0.0033), que el estrato medio es el que registró mayor proporción de frutos dañados, seguido por el superior y el inferior; en ese sentido, el estrato inferior tuvo menor índice de frutos dañados, que en el estrato medio y superior, concordando con Fernández (2011), Navarro, *et al.* (2011) y Saini y Alvarado (2001) en que el daño que provoca *A. lycopersici* es ascendente, y en la parte inferior la población no era considerable, ya que estaba desplazándose hacia los estratos superiores.

La variedad V305 F1 tuvo mayor propensión al daño en frutos (PR>F, 0.0595), aunque estos resultados son significativos a un valor de α=0.1. El análisis de correlación indica que a mayor proporción de frutos dañados (ρ=0.793) es mayor la densidad de infestación de TRM, coincidiendo con Kay (1986), Saini y Alvarado (2001) y Navarro, *et al.* (2011).
Índice de frutos útiles. El estrato inferior presentó mayor índice de frutos útiles (PR>F, 0.0033), seguidos del estrato medio y superior; lo cual se debe a que la población y el daño de TRM es ascendente, coincidiendo con Fernández (2011), Navarro, et al. (2011) y Saini y Alvarado (2001). La variedad V305 F1 tuvo menor índice de frutos útiles (PR>F, 0.0595). El análisis de correlación (α= 0.1) indica que a mayor cantidad de frutos útiles es menor el índice de daño (ρ=-1.000).

El bajo peso promedio de los frutos en los estratos medio y superior, ocasionan pérdidas económicas, concordando con Berlinger et al. (1982) y Kay (1986).

Al contrastar las variedades, a un valor de α= 0.1, V305 F1 tuvo menor peso promedio de frutos (PR>F, 0.0886). La variedad CID fue la de mejores resultados. El análisis de correlación muestra que a mayor peso promedio de frutos es menor el índice de frutos dañados (ρ= -0.846) y mayor el índice de frutos útiles (ρ= 0.844).

Densidad de infestación de A. lycopersici en frutos. A un valor de α=0.1, los resultados son significativos al determinar que el estrato medio presentó mayor cantidad de A. lycopersici, y posteriormente el estrato superior; el estrato inferior tuvo menor densidad de TRM, esto coincide con, Navarro, et al. (2011) y Saini y Alvarado (2001) quienes mencionan que a medida que TRM incrementa su población avanza por zonas ascendentemente, lo que indica que la densidad poblacional se estaba incrementando. En lo referente a las variedades (α=0.1) hubo diferencia significativa, la variedad V305 F1 tuvo mayor densidad de TRM (PR>F, 0.0661) en los tres estratos. El análisis de correlación, muestra que a mayor densidad de TRM será mayor el índice de daño (ρ= 0.793); y menor el número de frutos útiles (ρ= -0.791) y el peso promedio de frutos (ρ= -0.769).
La alta densidad de *A. lycopersici* ocasionó daños visibles en los frutos de jitomate, lo que provocó reducción en el peso de los frutos. La variedad V305 F1 es más susceptible al daño de TRM, ya que presentó mayor índice de frutos dañados y densidad de *A. lycopersici*, así como menor índice de frutos útiles y menor peso promedio por fruto. Mientras que la variedad CID fue la que tuvo mejores resultados. Con relación a los tres estratos, en las tres variedades, el estrato inferior presentó menor incidencia de daño y densidad de infestación en frutos, así como mayor índice de frutos útiles y peso promedio por fruto útil; le prosiguió el estrato medio y superior, ya que la población y el daño de *A. lycopersici* es ascendente.

Literatura Citada

En México, el estado de Chihuahua ocupa el primer lugar en producción de manzana, en 2016 aportó casi el 82 % y 84 % del valor económico generado. Los principales municipios productores son Cuauhtémoc, Namiquipa y Guerrero con 157,447.00, 146,840.32 y 139,798.77 toneladas, respectivamente (SIAP, 2018). La actividad manzanera en el estado genera 8 millones de jornales anuales y 35 mil empleos permanentes; generalmente para etnias Tarahumaras, Pimas y Guarajíos (CEIR, 2015).

Existen plagas que limitan la producción y comercialización de manzana en la entidad, por los daños que ocasionan en flores, brotes, ramas y frutos; dentro de las que destacan la palomilla de la manzana (Cydia pomonella) (Jacobo y Ramírez, 1999; Ramírez y Jacobo, 1999); el enrollador de bandas oblicuas (Choristoneura rosaceana) (Bautista et al., 2011); la mancha de fuego (Erwinia amylovora), estas tres se encuentran bajo campaña fitosanitaria como plagas prioritarias del estado de Chihuahua (CESAVECH, 2016). Además, el pulgón lanígero (Eriosoma lanigerum) y la araña roja (Tetranychus urticae) (Pérez, 2014).

En 2013 en tres hectáreas de plantación de manzano (Red delicious y Golden delicious, entre otras) de la localidad de Mesa Miñaca, Guerrero, Chihuahua, México, se observaron poblaciones de caracoles sin evidencia de daños; tres años...
después la población aumentó, se dispersó a 50 hectáreas aproximadamente y los daños fueron notorios. En el año 2016, con apoyo del Comité Estatal de Sanidad Vegetal de Chihuahua, el Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria a través de la Dirección General de Sanidad Vegetal, se realizó una recolecta de caracoles en el huerto Tío Simón, ubicado en las coordenadas 28º 30' 57.9378"N, 107º 27' 26.7114"O para la identificación de la especie, misma que se determinó como *Helix aspersa* (Stylommatophora: Helicidae) por la especialista Dra. Edna Naranjo García del Departamento de Zoología del Instituto de Biología, de la Universidad Nacional Autónoma de México.

En 2016 y 2017 en la región referida, la presencia de caracoles juveniles y adultos de *H. aspersa*, coincide con el inicio de la primavera y las poblaciones se reducen en el mes de noviembre. La distribución de la especie es homogénea en los huertos y no ha tenido preferencia de alimentación por alguna variedad de manzano. Previo a la formación de frutos, los caracoles se alojan en los troncos de los árboles, posteriormente se desplazan a la copa para alimentarse del follaje, que se caracteriza por perforaciones irregulares en los bordes; en presencia de frutos en desarrollo se alimentan de los mismos, lo que conlleva a la reducción de rendimiento y pérdida de valor comercial. Las acciones de control que se han implementado en la zona son capacitación, recolección manual, destrucción y enterrado de huevos, juveniles y adultos; eliminación de sitios de refugio (madrigueras de roedores, leña, rocas, residuos de podas, etc.) y la colocación de barreras metálicas en los tallos de los árboles.

Helix aspersa ha sido reportado como plaga de plantaciones de vid (*Vitis vinifera* L.) en regiones de Australia y Sudáfrica (Sanderson y Sirgel, 2002) y en cítricos de California, EE.UU., ha llegado a causar pérdidas de producción del 40 a 100 % (Sakovich, 2002). En México, no se ha documentado la importancia de *H. aspersa* como plaga de importancia económica en la agricultura; por lo que existe la necesidad de generar investigación al respecto.
Literatura Citada

SECCIÓN: CONTROL BIOLÓGICO

ESTRATEGIA REPRODUCTIVA DE *Diachasmimorpha longicaudata* (ASHMEAD) y *Doryctobracon crawfordi* (VIERECK) (HYMENOPTERA: BRACONIDAE).

Mario Alberto Miranda-Salcedo*1 y Martín Aluja2.

1Campo Experimental Valle de Apatzingán-CIRPAC-INIFAP, Km 17 carretera Apatzingán-C. Caminos, Antúnez Mich. C.P. 60781 tel. 018000882222 ext. 84601

2Instituto de Ecología A.C., Km 2.5 Antigua Carretera a Coatepec tel. 228 842 18 00.

*Autor de correspondencia: correo miranda.marioalberto@inifap.gob.mx

Una de las áreas de mayor interés en la ecología evolutiva de los parasitoides (Insecta: Hymenoptera) es el estudio sobre la asignación del sexo de su progenie (Godfray, 1994). Estos insectos pueden controlar el sexo de su progenie al asignar huevos fertilizados que dan origen a hembras (diploides) en hospederos grandes, y huevos no fertilizados que producen machos (haploides) en hospederos pequeños (Charnov, 1979). Las hembras controlan la inseminación al regular la liberación del esperma de su espermateca (King, 1993). En contraste, en parasitoides de la familia Tachinidae (Diptera), el sexo se determina por un mecanismo cromosómico (Waage, 1986). En la decisión de asignar el sexo en parasitoides influyen factores como: la presencia de hembras en el mismo parche (Hamilton, 1967), las altas y bajas temperaturas (Rotary y Gerling, 1973), el tamaño del hospedero (Charnov 1979), los factores genéticos (Waage y Godfray 1984), la presencia de hembras vírgenes que producen solamente hijos (Nishimura, 1997) y el superparasitismo (van Baaren *et al.* 1999). Los estudios de asignación del sexo son importantes debido a que tienen repercusiones prácticas. Muchas especies de parasitoides son criadas bajo condiciones de laboratorio con el fin de utilizarlos en esquemas de control biológico aumentativo y, mediante este mecanismo, reducir las poblaciones de plagas agrícolas (Waage,1986). En el caso de las moscas de la fruta (Diptera: Tephritidae), importante plaga de frutales, el control biológico mediante el uso de parasitoides se ha vuelto frecuente por ser un método biorracional. Con el fin de aportar elementos útiles para la cría masiva de dos especies
de parasitoides con alto potencial como agentes efectivos de control, *Diachasmimorpha longicaudata* (Ashmead) y *Doryctobracon crawfordi* (Viereck) (Hymenoptera: Braconidae), se decidió analizar los patrones de la determinación del sexo. La hipótesis que se sustenta, es que ambas especies presentan estrategias diferentes al asignar el sexo de su progenie, en respuesta a la presencia de hembras en el mismo parche y a la calidad del hospedero.

Los estudios se efectuaron en la planta Moscamed (SAGARPA-IICA) en Metapa de Domínguez, Chiapas, México. Los experimentos de laboratorio se desarrollaron a una temperatura de 24° ± 2°C y 60 - 80% de humedad relativa y un fotoperiodo de 12h luz: 12h oscuridad. La temperatura y humedad relativa se registraron con un higrotermógrafo (Oakton Model 08369-70, Cole-Parmer; Chicago, Illinois, USA). Con el fin de decidir el tipo de análisis se hicieron pruebas normalidad y homocedasticidad.

Se usó la prueba de Scheffe para la comparación de tratamientos (Statistica, 1984).

Los resultados indican que las hembras de *D. longicaudata* y *D. crawfordi* presentan diferentes estrategias al asignar el sexo de su progenie en respuesta a factores ambientales como calidad del parche y la interacción con conespecíficos e individuos de la otra especie. Por ejemplo, la edad del parasitode es importante en la asignación del sexo de su progenie, en este estudio se encontró que en las hembras jóvenes de *D. longicaudata* asignaron una menor proporción de hembras, en comparación con las hembras mayores de seis días de edad. Es posible que las hembras jóvenes de *D. longicaudata* hayan asignado una mayor proporción de machos, porque presentan una fuerte competencia intraespecífica (superparasitismo), característico en esta especie, como también ocurre en otras especies, por ejemplo *Bracon hebetor* Say (Hymenoptera: Braconidae) (Ode *et al.*, 1996). En contraste, *D. crawfordi* aun en condiciones de laboratorio tiene capacidad de discriminar hospederos parasitados por conespecíficos y por *D. longicaudata*, lo cual le permite asignar mejor el sexo de su progenie en función a su menor fecundidad potencial (Miranda, 2002).

La menor fecundidad de *D. crawfordi* (25 ovocitos/hembra) posiblemente le permita controlar mejor su dotación de huevos al momento de asignar el sexo de su progenie, mientras que las hembras de *D. longicaudata* (66 ovocitos/hembra) podrían incrementar
su adecuación si asignan una mayor proporción de machos, en hospederos previamente parasitados. Esto es común en especies con alta fecundidad (Iwasa et al., 1984) y que presentan superparasitismo (Ode et al., 1996; van Baaren et al. 1999). De acuerdo con los resultados la estrategia de ambas especies al asignar el sexo de su progenie, esta fuertemente determinada por su fecundidad y capacidad de discriminación.

Estos resultados también son relevantes si tomamos en consideración que ambas especies son agentes de control biológico por aumento y la asignación del sexo de su progenie podría significar el éxito o el fracaso de estos programas. En *D. longicaudata*, es una desventaja que las hembras jóvenes no asignen la misma proporción de hijas, en comparación con las hembras viejas, debido a que su esperanza de vida en campo es de alrededor de 15 días, este hecho posiblemente podría influir en el control de su hospedero (Miranda, 2002). En contraste a *D. crawfordi* le permitiría incrementar el número de hembra desde el momento de su liberación en campo.

En relación con la edad del hospedero se observó que en *D. crawfordi* no influyó en la asignación del sexo de su progenie. En el caso de *D. longicaudata* la proporción de hijas fue menor en hospederos jóvenes (tamaño pequeño). La dependencia entre la edad del hospedero y la asignación del sexo de la progenie, se debe probablemente a que las hembras obtienen una mayor adecuación si asignan una mayor proporción de machos en hospederos jóvenes y hembras en hospederos grandes (Charnov, 1979).

En muchas especies de parasitoides solitarios se ha observado que las hembras grandes presentan mayor fecundidad y longevidad en comparación con hembras pequeñas, como por ejemplo *T. evanescens* (Waage & Ng, 1984), *A. minuta* (Visser 1994) y *A. zwoelferi* (West et al., 1996). Este mismo hecho se observó en *D. crawfordi* y *D. longicaudata* (Miranda, 2002). Sin embargo, los resultados obtenidos con *D. longicaudata* al asignar el sexo de su progenie se ajustan al modelo de calidad del hospedero (Charnov, 1979; Godfray, 1994), en comparación con lo que predice el modelo de Hamilton (1967).

Literatura citada

PARÁMETROS PARA EVALUAR LA CALIDAD EN EL PROCESO DE LIBERACIÓN AÉREA DE Diachasmimorpha longicaudata (HYMENOPTERA: BRACONIDAE).

Manuel Enrique Vázquez-Gómez¹, Yeudiel Gómez-Simuta¹, Damaris Cruz-Cruz¹, Francisco Ramírez-Ramírez¹

¹ Programa Nacional Moscas de la Fruta, Km 19.8 Carretera a Pto.Madero Predio El Carmen, Cantón Leoncillos C.P. 30832 Tapachula, Chiapas.

*Autor de correspondencia: correo: manuel89261@gmail.com

La mosca del mediterráneo, Ceratitis capitata Wiedemann (Diptera: Tephritidae) es considerada una plaga polífaga y una de las más dañinas para las frutas y hortalizas; debido a su alta adaptabilidad, tiene un elevado potencial reproductivo, pues tiene más de 260 hospedantes, por lo que, causa grandes pérdidas de cosechas y limita el intercambio comercial entre áreas infestadas y áreas libres (Liquido et al. 1990; Thomas et al. 2005).

Una de las estrategias que ha tenido gran éxito para combatir esta plaga es la implementación de la Técnica del Insecto Estéril (TIE), que provoca un efecto directo a la tasa de natalidad, logrando una disminución en su progenie (Carpenter, 1981).

Sin embargo es necesario complementar la TIE con el control biológico por aumento (CBA) (Hajek, 2004); debido a que la sinergia de esta técnica contribuye de manera significativa en la supresión de poblaciones plaga de moscas de la fruta (Montoya y Cancino, 2004). Entre los enemigos naturales de C. capitata destaca Diachasmimorpha longicaudata (Ashmead), que se caracteriza porque se cría fácilmente bajo condiciones de laboratorio (Montoya et al. 2000). Estudios previos
han demostrado que con la aplicación de estas dos estrategias se logró obtener un parasitismo del 61.6% y una supresión de la población silvestre de *C. capitata* del 89.4% (Wong *et al.* 1992).

Para la metodología se emplearon parasitoides emergidos de pupas producidas en el Laboratorio de Cría de Parasitoides de la Planta Moscafrut (14°49'49.2"N, 92°11'44.8"W y una altitud de 102 m sobre el nivel del mar). Los parasitoides fueron desarrollados en cría masiva empleando como hospederos larvas irradiadas de *Anastrepha ludens* (Loew) para evitar emergencia de moscas de hospederos no parasitados y enviados al centro de empaque de moscas del mediterráneo para su empaque, permanencia, colecta y liberación.

Para las pruebas de emergencia y longevidad (sin agua y alimento): Esta prueba se realizó en las condiciones ambientales de las sala de emergencia donde permaneció el envío del material biológico; se colocaron 100 pupas de una muestra compuesta al azar al momento del empaque, en una celdilla con división para cada pupa, este procedimiento se realizó por triplicado para obtener una media aritmética de los resultados (Figura 1).

Para esta evaluación de proporción de sexo se utilizaron las mismas celdillas en las que se evaluó la emergencia y longevidad.

Voladoras post-liberación: Para esta evaluación se seleccionó una torre, tomando una muestra de 40 ml de material biológico por nivel (un total de 320 ml), formando una muestra compuesta homogénea, representativa de todo el lote.
Se contabilizaron 100 parasitoides hembras dentro de la cámara fría, que fueron depositados en una bolsa velcro (se realizaron 3 repeticiones). Las bolsas velcro de las 3 repeticiones se colocaron en el interior de la caja liberadora, procurando que el material biológico cubriera las bolsas velcro al menos al nivel en que se encontraban los parasitoides de las muestras (Figura 2).

![Figura 2. Prueba de hembras voladoras post-liberación](image)

Se recibió un total de 28 envíos de *D. longicaudata* en el CEMM, de los cuales el promedio de emergencia del séptimo día fue de 79.39%, y el promedio en la liberación fue de 68.39%. El promedio de hembras emergidas de los 28 envíos de *D. longicaudata* recibidos en el CEMM fue de 79.41%, y 20.58% correspondió a machos.

En la figura 3. Se muestran los promedios de los millones de pupa empacados, millones de parasitoides liberados, millones de hembras y machos liberados y finalmente el promedio de la cantidad en millones de las hembras que volaron en campo, se puede observar claramente como decrece la cantidad en cada etapa.
Figura 3. Promedios en la liberación de *D. longicaudata*

Literatura Citada

EFECTO DE INSECTICIDAS EN POBLACIONES DEL PULGÓN AMARILLO DEL SORGO Y SUS ENEMIGOS NATURALES.

Isis A. Jaimez-Ruiz†, J. Refugio Lomelí-Flores¹, Esteban Rodríguez-Leyva¹, Rafael Bujanos-Muñiz², Héctor González-Hernández¹ y Laura D. Ortega- Arenas

*Autor de correspondencia: correo jaimez.isis@colpos.mx

El pulgón amarillo del sorgo (PAS), Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) es una plaga de reciente introducción en México (Rodríguez-del-Bosque y Terán, 2015), que desde finales del 2013 ha ocasionado daños en el cultivo del sorgo como clorosis, necrosis, retardo en la floración, llenado pobre del grano y pérdidas en el rendimiento (Singh et al., 2004; Bowling et al., 2016). Para su control, se ha utilizado un manejo integrado de plagas (Quijano et al., 2017) haciendo énfasis en el control biológico y el químico. Hasta la fecha se conoce la toxicidad insecticidas sobre poblaciones de PAS en laboratorio y campo (Jones et al., 2017; Tejeda-Reyes et al., 2017), y la toxicidad y persistencia de los insecticidas sobre algunas especies de enemigos naturales en condiciones de laboratorio (Colares et al., 2016; Jaimez-Ruiz et al., 2016; Barbosa et al., 2017; Jaimez-Ruiz et al., 2017).

Sin embargo no se conoce el efecto que tiene una aplicación de insecticidas en campo en la interacción de PAS con depredadores y parasitoides asociados. Es por eso, que el objetivo del trabajo fue evaluar las poblaciones de PAS y enemigos naturales en el cultivo del sorgo bajo la aplicación de insecticidas biorraionales y convencionales.

En el estado de Guanajuato, México, se ubicaron tres localidades con cultivos de sorgo de 2 a 3 meses de desarrollo, con presencia del PAS y enemigos naturales. Las localidades fueron: Abasolo (20°27´15.1´´N, 101°32´00.6´´W), Celaya-Cortázar (20°30´45.6´´N, 100°56´03.3´´W) y Pénjamo (20°26´54´´N, 101°32´59.5´´W). En
cada localidad se dividió el cultivo en un diseño completamente al azar, para seis tratamientos con tres repeticiones. Cada unidad experimental fue de 20 x 4.8 m. Primero se realizó un muestreo para determinar las densidades poblacionales del PAS y sus enemigos naturales previas a la aplicación de los tratamientos. Para ello, se seleccionaron 20 plantas en zig-zag al azar dentro de la unidad experimental a las cuales se les contabilizó el número de PAS en la primera hoja después de la bandera y en la primera hoja inferior erecta según la tarjeta de monitoreo que recomiendan la campaña del PAS (Quijano et al., 2017), así como el número de depredadores y parasitoides en toda la planta (Marín y Herrera, 2016). Posteriormente, se realizó la aplicación de los tratamientos dirigida al envés de las hojas de sorgo con una mochila motorizada a una presión de 100 psi. Los tratamientos fueron: jabón agrícola (Impide®, 2000 mL ha⁻¹), sulfoxaflor (Torretto® 21.8 SC, 100 mL ha⁻¹), flupyradifurone (Sivanto® prime 200 SL, 200 mL ha⁻¹), imidacloprid (Confidor® 350 SC, 200 mL ha⁻¹) y un testigo, todos diluidos en agua más adherente (INEX-A® 1 mL L⁻¹), en un volumen de 300 L ha⁻¹ de agua (Quijano et al., 2017). Adicionalmente, se incluyó un testigo absoluto donde no hubo aplicación. Posteriormente, se realizó la evaluación del PAS y enemigos naturales a 1 y 7 d después de la aplicación (DDA) de los tratamientos, como se describió anteriormente. Los resultados para cada localidad fueron analizados por un Kruskall-Wallis para comparar entre tratamientos usando el programa SAS versión 9.4 (SAS Institute, 2013).

En las tres localidades se observó que sulfoxaflor, flupyradifurone e imidacloprid fueron capaces de disminuir las poblaciones de PAS desde 1 DDA y se mantuvo hasta 7 DDA, no se presentaron diferencias significativas entre ellos (P>0.05). Coincidente con los registro de Tejeda-Reyes et al. (2017), quienes aseguran que estos insecticidas convencionales son capaces de mantener las poblaciones de PAS por debajo del umbral hasta por 21 días. Para el caso del jabón agrícola se observó que este fue capaz de disminuir las poblaciones de PAS 1DDA, pero para los 7 DDA las poblaciones de PAS se reestablecieron, siendo éste tratamiento
diferente de los insecticidas convencionales (P<0.0001). Con respecto al testigo con el adherente, se observó una disminución 1 DDA en las poblaciones de PAS sólo para Celaya-Cortázar donde se tenían registros iniciales de altas poblaciones por encima de 800 pulgones planta⁻¹, sin embargo para los 7 DDA las poblaciones de PAS se reestablecieron o aumentaron con respecto al testigo. Se considera que aplicaciones de agua a alta presión afectan al pulgón, pero se determinó con éste trabajo que aplicaciones con jabón agrícola o el adherente tiene un control del PAS de forma inmediata, pero no es persistente en el tiempo.

Por otro lado, para las tres localidades se encontraron ocho especies de enemigos naturales entre depredadores y parasitoides. Sin embargo, el depredador más abundante fue *Hippodamia convergens* teniendo un máximo de 8 individuos planta⁻¹ en Pénjamo, el resto de las especies de coccinélicos, sírfidos y crisopas no superpusieron 1 individuo planta⁻¹ en las tres localidades. *H. convergens* se vio afectado por las aplicaciones de insecticidas convencionales, en las plantas de sorgo donde se realizó la aplicación de sulfoxaflor, flupyradifruone e imidacloprid a los 7 DDA había una disminución de dicho depredador en más de un 50%. Posiblemente hubo un efecto toxico y de repelencia, ya que los depredadores se trasladaron a las plantas testigos y de jabón agrícola, donde había mayores poblaciones de PAS y menores niveles de toxicidad. El parasitoide, *Aphidius platensis*, también se vio afectado por las aplicaciones de insecticidas convencionales, en este caso a los 7DDA se vio un incremento de momias (pulgones parasitados).

Finalmente, se determinó que los insecticidas utilizados son capaces de disminuir las poblaciones de PAS, siendo más efectivos los insecticidas convencionales. Sin embargo las poblaciones de enemigos naturales son más afectadas por los insecticidas convencionales que con los biorracionales o el uso del adherente. Por lo que es necesario para el control del PAS seguir un manejo integrado, evitando el uso de insecticidas convencionales ya que de forma natural hay hasta ocho
especies entre depredadores y parasitoides que son capaces de ejercer un control en las poblaciones de PAS.

Literatura citada

El gusano cogollero, *Spodoptera frugiperda*, es una plaga de importancia económica por los daños y pérdidas que causa en cultivos como el maíz y el sorgo (Zenner de Polanía *et al.*, 2007). Para su control existen varias estrategias de manejo, una de ellas es el control biológico mediante el uso parasitoides de huevos del género *Trichogramma* (García-González *et al.*, 2011); principalmente *Trichogramma pretiosum* que en México su uso data de 1963 (Bahena-Juárez *et al.*, 2010). A pesar de lo difundido que está el uso de esta especie de parasitoide, para el control del gusano cogollero, se han realizado muy pocas evaluaciones de su eficiencia en campo, por lo que el uso de centinelas puede ser una alternativa para realizar estas evaluaciones; sin embargo, existen algunos problemas en su implementación como son: ¿Qué edad de huevos deben ser expuestos a parasitismo?, ¿Los huevos del huésped refrigerados pueden ser igualmente efectivos para detectar parasitismo en campo?. Para resolver algunas de estas incógnitas el objetivo de este trabajo fue usar centinelas para monitorear el grado de parasitismo de *T. pretiosum* sobre huevos de *S. frugiperda* con diferentes edades y tiempo de refrigeración.
Para los experimentos se utilizaron masas de huevos de *S. frugiperda*, producidas en el laboratorio de Control Biológico del Postgrado en Fitosanidad-Entomología y Acarología, del Colegio de Postgraduados, donde se mantiene una cría, en condiciones de temperatura 26±2 °C, humedad relativa de 75±5 y un fotoperiodo de 12:12 h (luz:obscuridad). Los adultos de *T. pretiosum*, se obtuvieron de la empresa Organismos Benéficos para la Agricultura, S.A. de C.V de Autlán de Navarro, Jalisco.

Para determinar si el almacenamiento en frío afecta el porcentaje de eclosión de larvas de *S. frugiperda* se utilizaron 35 masas de huevos de esta especie. Se formaron siete grupos de cinco masas, cada uno de los cuales se mantuvieron en cajas Petri (2.9 cm de diámetro y 1.9 cm de altura). El primero de los grupos se colocó inmediatamente en una cámara de cría a 25±2 °C (este se consideró el testigo). El resto se sometió a refrigeración en una cámara de cría a 10±2 °C. Cada 24 h se retiró un nuevo grupo y se colocó en la cámara de cría a 25±2 °C; de esta manera se tuvieron masas refrigeradas de 0, 1, 2, 3, 4, 5 y 6 días. Cada una de las masas fue fotografiada antes del almacenamiento en frío con una cámara Carl Zeiss, Discovery V20. Con ayuda del programa ImageJ se realizaron conteos para conocer el número de huevos durante un periodo de 0 a 6 d, estas masas fueron colocadas en vasos de plástico número 0 (4 cm de diámetro y 3.8 cm de altura), con tapas perforadas para permitir la ventilación y posteriormente determinar la emergencia de larvas de *S. frugiperda*.

El segundo experimento consistió en determinar el efecto del almacenamiento en frío de huevos de *S. frugiperda* sobre el parasitismo de *T. pretiosum*, para lo cual se utilizaron 35 masas de huevos de *S. frugiperda*. Diariamente, por 6 d consecutivos, se fueron almacenando en una cámara de cría a 10±2 °C cinco masas de huevos de *S. frugiperda*; de esta manera al finalizar el sexto día se tuvieron masas con 0, 1, 2, 3, 4, 5 y 6 días de almacenamiento. También estas masas fueron fotografiadas con una cámara Carl Zeiss, Discovery V20, después se colocaron de manera individual en cajas Petri (2.9 cm de diámetro y 1.9 cm de altura). Por otro lado, 2 d antes de la exposición de las masas a parasitismo, se colocaron cinco pulgadas...
cuadradas de *T. pretiosum* en cajas Petri (4 cm de diámetro y 1.7 cm de altura) para esperar la emergencia de avispas. Una vez emergidas, se adormecieron con CO$_2$ por 40 min para poder seleccionar 350 hembras. Cada una de las masas de huevos de *S. frugiperda*, se colocaron en cajas Petri junto con 10 hembras de *T. pretiosum* y se almacenaron a 25$^\circ$ C y durante 24 h se permitió el libre parasitismo. A los 8 d las masas fueron fotografiadas para realizar el conteo de huevos parasitados con el programa ImageJ. Para determinar si hubo efecto de almacenamiento en frío de huevos de *S. frugiperda* sobre la eclosión y parasitismo se usó un análisis de varianza. Los resultados mostraron que hubo emergencia de larvas de *S. frugiperda* de todas las masas de huevos independientemente del tiempo de almacenamiento (0 a 6 d de almacenamiento a 10$^\circ$ C), pero no se registró diferencia significativa entre el porcentaje de emergencia de larvas de *S. frugiperda* en los diferentes tiempos de almacenamiento (F= 1.52; GL= 19,6; P= 0.23), por lo tanto la emergencia de larvas no se vio afectada por los diferentes tiempos de almacenamiento (Fig. 1).

![Gráfica de emergencia de larvas de *S. frugiperda*](image)

Figura 1.- Porcentaje de emergencia de larvas de *S. frugiperda* después del almacenamiento de huevos a 10 grados centígrados por uno a seis días (F= 1.52; GL= 19,6; P= 0.23)

Por otro lado, se registró parasitismo por *T. pretiosum* en todas las masas de *S. frugiperda* almacenadas a 10$^\circ$ C de los 0 a 6 d, y no se registró diferencia significativa entre el parasitismo y el tiempo de almacenamiento de los huevos, por lo que se concluye que no importa el tiempo de almacenamiento ya que los huevos
de *S. frugiperda*, aún son viables para ser parasitados ($F= 1.1$; $GL= 26, 6$; $P= 0.39$) (Fig. 2); al parecer la única condición es que sean almacenados en frío inmediatamente después de ser cosechados.

Se agradece al Comité Estatal de Sanidad Vegetal del Estado de Guanajuato el financiamiento para este estudio y al Colegio de Postgraduados por las facilidades y recursos para realizar la presente investigación.

Figura 2.- Porcentaje de parasitismo (\pmEE) por *T. pretiosum* en huevos de *S. frugiperda* al ser almacenados en frío hasta por seis días ($F= 1.1$; $GL= 26,6$; $P= 0.39$).

Literatura citada

Spodoptera frugiperda (J.E. Smith) (Lepidóptera: Noctuidae) y algunas plantas

**PORCENTAJE DE CONTROL DE DOS PARASITOIDES DE LARVA
SOBRE *Anthonomus eugenii* (COLEOPTERA: CURCULIONIDAE)
EN TRES VARIEDADES DE CHILE.**

Juan Eduardo Murillo-Hernández¹, J. Refugio Lomelí-Flores¹, Esteban Rodríguez-
Leyva¹, Alfonso Torres-Ruiz², Ma. Teresa Santillán-Galicia¹, Érica Muñíz-Reyes³.

²Koppert México. Circuito el Marqués norte no. 82. Parque industrial El Marqués, CP. 76246 El Marqués, Querétaro. México.

³INIFAP. Campo Experimental Valle de México. Carretera Los Reyes-Texcoco km. 13.5, Coatlinchan, C.P. 56250 Texcoco, Estado de México, México.

Autor de correspondencia: correo jeduardomh@hotmail.com

En México se reportan 11 especies de parasitoides atacando al picudo del chile, *Anthonomus eugenii* Cano (Rodríguez-Leyva *et al.*, 2007; 2012). De estas, *Catolaccus hunteri* (Crawford) (Hymenoptera: Pteromalidae) es el parasitoide que se encuentra con mayor frecuencia y abundancia (Rodríguez-Leyva *et al.*, 2007; 2012). Este parasitoide es sinovigénico (Rodríguez-Leyva *et al.*, 2000); sin embargo, se desconoce el porcentaje de depredación que puede ejercer sobre el picudo del chile y solo se tienen reportes de parasitismo en campo. Cortez *et al.*, (2005) reportaron 2% de parasitismo en jalapeño, mientras que Schuster *et al.*, (1988) 50% en frutos de jalapeño recolectados del suelo y 20% en pimiento. Se ha especulado que el porcentaje de parasitismo sobre *A. eugenii* puede estar influenciado directamente por la variedad de chile donde se desarrolle esta plaga (Murillo-Hernández *et al.*, 2016); sin embargo, aún falta corroborar esto. Por lo tanto, el objetivo de este trabajo fue estimar el porcentaje de control (depredación+parasitismo) de dos especies de parasitoides: *C. hunteri* y *Bracon* sp. 2 (Hymenoptera: Braconidae) (este último no se colectó en picudo del chile, pero funciona como su huésped facticio y pudiera tener potencial para su control).
Los experimentos se realizaron sobre tres variedades de chile, en condiciones de laboratorio (27±2 °C, 60±10% HR, 12:12 L:O), utilizando hembras adultas de picudo del chile de 10 días de edad y previamente apareadas; y hembras de los parasitoides de 15 días de edad y también previamente apareadas, estas se proporcionaron por Koppert México. Los frutos que se utilizaron se encontraban en etapa inmadura y eran de los siguientes diámetros: chile de árbol ≤1cm, Jalapeño <2cm y Pimiento <5 cm.

Para infestar los frutos de cada variedad de chile con picudo, en una jaula de plástico con capacidad de 3.8 litros (con ventanas de tela de organza), se colocaron 15 frutos de la misma variedad y 30 hembras de picudo. Después de 24 horas se retiraban los frutos y con un microscopio estereoscopio se contabilizaba el número de oviposturas en cada fruto. Posteriormente en jaulas de plástico de 1 litro de capacidad (con ventanas de tela de organza), se confinaban frutos con oviposturas hasta completar entre 15 a 20 oviposturas totales por jaula, y estos permanecían así por 7 días (para que las larvas de picudo estuvieran en 3er. instar). Una vez transcurrido este periodo, se introducían dos hembras de una especie de parasitoides al tratamiento (según correspondiera *C. hunteri* o *Bracon* sp. 2) y el testigo permanecía sin parasitoides. Los frutos y los parasitoides permanecieron juntos por 3 días. Los frutos se disectaban y ayudándose de un microscopio estereoscopio se contabilizaba el número de larvas sanas, depredadas y parasitadas. En total se realizaron 30 repeticiones por tratamiento.

El porcentaje de depredación se estimó con la fórmula: número de larvas depredadas / número total de larvas X 100) y el de parasitismo por: número de larvas parasitadas / número total de larvas X 100); el porcentaje de control se definió como la suma de ambos. También, se realizaron análisis de varianza (ANOVA) de los datos transformados de porcentajes de parasitismo y/o depredación, y al obtener diferencias significativas se realizaron pruebas de separaciones múltiples de medias (Tukey P≤ 0.05) con el programa Statistix 8.1.

Cuadro 1. Porcentaje de control de dos parasitoides sobre *A. eugenii* en tres variedades de chile.
<table>
<thead>
<tr>
<th>Especie</th>
<th>Variedad</th>
<th>% de control (media±E.E.)*</th>
<th>Depredación</th>
<th>Parasitismo</th>
<th>Depre+Para</th>
</tr>
</thead>
</table>
| *Medias con letras mayúsculas iguales entre columnas no difieren estadísticamente (Tukey P≤ 0.05).
*Medias con letras minúsculas iguales entre columnas no difieren estadísticamente (Tukey P≤ 0.05). |

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **Catolaccus hunteri** presentó diferencias en los porcentajes de depredación ($F_{2, 87} = 14.69; P<0.0001$), parasitismo ($F_{2, 87} = 21.66; P<0.0001$) y control (depredación+parasitismo) ($F_{2, 87} = 46.78; P<0.0001$) sobre larvas de picudo en las tres variedades de chile. Independientemente de la variedad, los porcentajes de depredación fueron aparentemente mayores a los porcentajes de parasitismo (cuadro 1). En ningún trabajo se reporta el porcentaje de depredación de este parasitoide sobre picudo, solo porcentajes de parasitismo en campo, Cortez et al., (2005) reportaron 2% de parasitismo en jalapeño, Schuster et al., (1988) 50% de parasitismo en frutos de jalapeño recolectados del suelo y 20% en pimiento; estos reportes no están tan alejados de los resultados aquí obtenidos en jalapeño (8.97±1.89) y pimiento (14.71±1.99). Sin embargo, cuando solo se determina el porcentaje de parasitismo y no se toma en cuenta la depredación, se podría estar subestimando el porcentaje de control que podría ejercer esa especie de parasitoide. En este trabajo el porcentaje de control más elevado se obtuvo en chile de árbol (74.97±3.88), y solo este tratamiento fue diferente en comparación con pimiento (36.65±3.21) y jalapeño (31.23±3.33).

Para la especie **Bracon sp.2** también se encontraron diferencias en los porcentajes de depredación ($F_{2, 87} = 4.03; P=0.0212$), parasitismo ($F_{2, 87} = 12.48; P<0.0001$) y control (depredación+parasitismo) ($F_{2, 87} = 21.06; P<0.0001$) sobre larvas de picudo en las tres variedades de chile. Como esta especie no está aún identificada y **A. eugenii** no es su huésped natural tampoco se cuenta con reportes previos de depredación y parasitismo, solo los que se muestran en el cuadro 1. El porcentaje
de control observado en chile de árbol fue mayor (66.47±3.31) en comparación con pimiento (46.34±2.29) y jalapeño (38.80±3.59).

Anteriormente Murillo-Hernández et al., (2016) reportó el parasitismo hipotético de estos dos parasitoides sobre picudo en las mismas tres variedades. Aunque estos porcentajes son hipotéticos y difieren de los resultados de porcentaje de control presentados en este trabajo; es importante recalcar que la tendencia en control de la plaga por estos dos parasitoides es la misma en ambos trabajos para estas tres variedades de chile. Por lo anterior, se concluye que es recomendable continuar con investigaciones de este tipo, pues con este trabajo se puede inferir la posible existencia de otros factores que también influyen o determinen la efectividad de los parasitoides de esta plaga y poder diseñar mejores estrategias o determinar cuál sería la mejor opción para combatirla en condiciones específicas.

Se agradece al CONACYT por una beca otorgada al primer autor para realizar estudios de doctorado; al Colegio de Postgraduados y Koppert México por las facilidades y recursos para realizar la investigación.

Literatura citada

Rodríguez-Leyva, E., P. A. Stansly, D. J. Schuster, and E. Bravo-Mosqueda. 2007. Diversity and distribution of parasitoids of Anthonomus eugenii (Coleoptera:...

DEPREDACIÓN DE *Catolaccus hunteri* (HYMENOPTERA: PTEROMALIDAE) SOBRE HUEVO Y LARVAS JÓVENES DE *Anthonomus eugenii* (COLEOPTERA: CURCULIONIDAE).

Yolanda García-Martínez¹, Juan Eduardo Murillo-Hernández¹*, J. Refugio Lomelí-Flores¹, Esteban Rodríguez-Leyva¹.

*Autor de correspondencia: correo jeduardomh@hotmail.com

En México se han reportado 11 especies de parasitoides atacando al picudo del chile, *Anthonomus eugenii* Cano (Rodríguez-Leyva *et al.*, 2007; 2012). De estas, *Catolaccus hunteri* (Crawford) (Hymenoptera: Pteromalidae) es el parasitoide que se encuentra con mayor frecuencia y abundancia atacando a esta plaga (Rodríguez-Leyva *et al.*, 2007; 2012). Se reporta que este parasitoide es sinovigénico y se alimenta de larvas de tercer instar (Rodríguez-Leyva *et al.*, 2000). También, se tienen reportes de porcentaje de parasitismo en campo: Cortez *et al.*, (2005) reportaron 2% de parasitismo en chile jalapeño, y Schuster *et al.*, (1988) señalan 50% de parasitismo en frutos de jalapeño recolectados del suelo y 20% en pimiento. Sin embargo, en estos trabajos no se reporta el porcentaje de depredación de este parasitoide, por lo que se considera se podría estar subestimando su capacidad de control. Solo Torres- Ruiz *et al.*, (2015) reportan porcentaje de depredación sobre larvas de picudo en chile pimiento en semicampo (40 a 60%); sin embargo, no señalan si la depredación se ejerció en larvas de tercer instar o más jóvenes. Por lo
tanto, aún se desconoce si el parasitoide tiene la capacidad de alimentarse de huevo y larvas jóvenes (1ro y 2do instar) de picudo del chile. Es por esto, que el objetivo de este trabajo fue determinar si *C. hunteri* tiene la capacidad de alimentarse de huevos y larvas jóvenes de *A. eugenii* y en qué porcentaje.

En los experimentos se utilizaron hembras adultas de picudo del chile de 10 días de edad y previamente apareadas; también, hembras de *C. hunteri*, las cuales tenían 15 días de edad y estaban apareadas. Se utilizaron frutos de chile Pimiento, que estaban aún en etapa inmadura y de diámetros <5 cm.

Todos los experimentos se llevaron a cabo en condiciones controladas 27±2 °C, 60±5% HR, 12:12 L: O. Para infestar con picudo los frutos de pimiento, en una jaula de plástico con capacidad de 3.8 litros (con ventanas de tela de organza), se colocaron juntos 15 frutos y 30 hembras de picudo durante 24 horas. Posteriormente, se retiraron los frutos y con un microscopio estereoscopio se contabilizó el número de oviposturas en cada fruto. Los estados de desarrollo del picudo se calcularon según lo reportado por Toapanta *et al.*, (2005).

Para evaluar depredación sobre huevos de *A. eugenii*, en vasos de plástico de ½ litro de capacidad (con ventanas de tela de organza), se confinaban frutos con diferentes cantidades de oviposturas hasta completar entre 15 a 20 oviposturas por vaso, inmediatamente se introducían dos hembras de *C. hunteri* para completar el tratamiento; el testigo fueron frutos con las mismas condiciones pero sin parasitoide. Los frutos y los parasitoides se mantuvieron juntos por 1.5 días para asegurar que los parasitoides sólo estuvieran en contacto con huevos de picudo y no con larvas. Una vez transcurrido este periodo, se retiraron los parasitoides y se contabilizó el número de huevos depredados en cada unidad experimental. El porcentaje de depredación se estimó de la siguiente manera: número huevos depredados / número total de huevos X 100.

Para evaluar depredación sobre larvas jóvenes de *A. eugenii* (1ro y 2do instar), en vasos de plástico (características arriba descritas), se confinaron frutos infestados con diferentes cantidades de oviposturas hasta completar entre 15 a 20 oviposturas
por vaso. Se mantuvieron así durante 3.5 días (para que las larvas en los frutos ofrecidas a los parasitoides fueran de primer instar), transcurrido este tiempo, se introdujeron dos hembras de *C. hunteri* al tratamiento (el testigo permaneció sin parasitoide). Los frutos y los parasitoides permanecieron juntos por 1.5 días para asegurar que los parasitoides sólo estuvieran en contacto con larvas de 1ro y 2do instar y no con larvas de 3ro. Una vez transcurrido este periodo, se retiraron los parasitoides y se contabilizó el número de larvas sanas y depredadas en cada unidad experimental. En este y en el anterior experimento se realizaron 10 repeticiones por tratamiento y el experimento se replicó tres veces en el tiempo. El porcentaje de depredación se estimó de la siguiente manera: el número de larvas depredadas / número total de larvas X 100. Sólo en este caso se realizó una prueba de t de Student mediante el programa Statistix 8.1.

En el experimento de depredación de *C. hunteri* sobre huevos de *A. eugenii*, no se realizó un análisis estadístico, pues, en ningún caso el parasitoide depredó huevos. Se sabe que los parasitoides localizan a sus huéspedes por medio de semioquímicos y señales visuales; Además, en algunos casos donde el huésped se encuentra dentro de frutos u otros tejidos de plantas (como en este caso) los parasitoides pueden recurrir a otras señales para localizar a sus huéspedes; por ejemplo: los *Pteromalídos, Bracónidos, Eulophidos*, detectan y encuentran a sus presas por medio de vibrotaxis, vibraciones que los huéspedes provocan al moverse o alimentarse (Meyho\-"fer y Casas, 1999). Una vez conociendo cómo los parasitoides localizan a sus hospederos, una probable explicación al por qué los parasitoides no depredaron huevos de picudo del chile pudiera ser que en el estadio de huevo no se produzcan sonidos o vibraciones detectables y sea por esto que el parasitoide no ataque y se alimente de huevos.

En el experimento de depredación de *C. hunteri* sobre larvas jóvenes de *A. eugenii* (1ro y 2do instar) se observaron diferencias entre el tratamiento y el testigo (*t* = 4.21; gl = 59; *P* = 0.0001). El porcentaje medio de depredación de *C. hunteri* fue de 16.83±3.37\% de *C. hunteri*, aunque se apreciaron valores máximos de hasta el 60\% y 0\% en el testigo. En contraste Torres- Ruíz *et al.*, (2015) reportaron un porcentaje
de depredación de larvas de picudo entre 40 a 60% en chile pimiento en semicampo; sin embargo, no se reporta si la depredación se ejerció en larvas de tercer instar o larvas jóvenes; además, el periodo de exposición con el parasitoide fue mayor. Por lo tanto, el porcentaje de depredación que ellos reportan, puede ser el total de depredación ejercida por el parasitoide en los tres instares larvales del picudo y sea por esto diferente del reportado aquí en larvas jóvenes. Por otro lado, el porcentaje de depredación reportada por Torres- Ruiz et al., (2015) es mayor a los reportes de parasitismo (2-50% en frutos de jalapeño recolectados del suelo y 20% en pimiento Cortez et al., 2005; Schuster et al.,1988). Con esta información, se podría sugerir que C. hunteri tendría mayor impacto sobre el picudo del chile actuando como depredador que como parasitoide; no obstante, si sumamos los porcentajes de ambos comportamientos se pudiera reportar el porcentaje de control total sobre la plaga.

Literatura citada

PARASITISMO EN Trioza aguacate (HEMIPTERA: TRIOZIDAE) POR Tamarixia aguacatensis (HYMENOPTERA: EULOPHIDAE) EN MICHOACÁN, MÉXICO.

María Graciela González-Santarosa¹, Néstor Bautista-Martínez², y Fermín Jaimes-Albíter¹

¹Universidad Autónoma Chapingo. Km 38.5 Carretera México-Texcoco, Chapingo, Estado de México. C.P. 56230. México.

*Autor de correspondencia: correo mgonzalez251@hotmail.com

El psílido del aguacate, Trioza aguacate Hollis & Martin (Hemiptera: Triozidae) afecta árboles criollos y de la variedad Hass (Yefremova et al., 2014). En la actualidad, no existe ningún estudio sobre el control de este psílido, sin embargo, los enemigos naturales pueden ejercer un papel importante en su control. Recientemente, se describió para México a Tamarixia aguacatensis Yefremova (Hymenoptera: Eulophidae) como un parasitoide de ninfas de T. aguacate. Este parasitoide se encuentra distribuido en varios municipios del estado de Michoacán, donde está presente el psílido (Yefremova et al., 2014). La presente investigación se realizó con el propósito de determinar los niveles de parasitismo sobre T. aguacate por T. aguacatensis.
La investigación se llevó a cabo en dos huertos de aguacate ubicados dentro de la franja aguacatera del estado de Michoacán, México. El primer huerto “Los Gemelos” ubicado en el ejido El Tarascón, municipio de Salvador Escalante (19° 26’ 29.81” N, 101° 49’ 53.03” O, 1860 m). El segundo huerto “San Lorenzo” ubicado en la comunidad de San Lorenzo, municipio de Uruapan (19° 31’ 25.45” N, 102° 05’ 12.58” O, 2130 m). Para determinar la abundancia de ninfas de *T. aguacate* y su parasitoide *T. agucatensis*, en cada huerto se seleccionaron nueve árboles distribuidos en forma cruz y de cada árbol se colectaron al azar cuatro brotes de no más de ocho centímetros de longitud. Los brotes se colocaron individualmente en bolsas de polietileno previamente etiquetadas y se depositaron en hieleras donde permanecieron hasta su traslado al Laboratorio de la Universidad Autónoma Chapingo. Los brotes colectados se examinaron bajo el microscopio estereoscópico Leica 2000, y se contabilizó en cada brote, el número total de ninfas, así como las ninfas parasitadas que tenían huevos o larvas del parasitoide en sus cuerpos, además de las momificadas. Para evaluar el nivel de parasitismo, se consideraron las ninfas de cuarto y quinto instar, ya que son las más susceptibles a ser parasitadas. Los muestreos se realizaron cada 21 días, de enero de 2012 a julio de 2013. El porcentaje de parasitismo se calculó empleando las fórmulas de Paiva y Parra (2012) y Rodríguez-Palomera *et al.* (2012).

La abundancia de *T. aguacate* y su parasitoide *T. agucatensis* en el huerto Los Gemelos durante el ciclo 2012, se manifestó con un total de 1,804 ninfas del psílido, de las cuales 1,583 eran ninfas pequeñas (primer, segundo y tercer instar) y 215 ninfas de cuarto y quinto instar; de estas últimas, 123 estaban parasitadas con *T. agucatensis*. En el ciclo 2013 se contabilizaron 322 ninfas en total, de las cuales 243 fueron ninfas chicas y 79 ninfas de cuarto y quinto instar; de estas últimas, 41 estaban parasitadas. En este huerto, en el ciclo 2012 se alcanzaron niveles de parasitismo entre el 33.3 y 93.8%. Los porcentajes de parasitismo más bajos se presentaron a mediados de mayo (46.7%), cuando la densidad de ninfas de cuarto y quinto instar alcanzó el pico más alto y a finales de junio (33.3%), donde la...
densidad de las ninfas iba disminuyendo (Figura 1a). En el ciclo 2013, la densidad de población de ninfas y su parasitoide fue menor que en el ciclo anterior, alcanzando niveles de parasitismo del 20.8 al 60%. Los porcentajes de parasitismo más altos, se presentaron en febrero (60%), finales de marzo (57.1%), abril (54%) y mayo (50%). Los niveles de parasitismo más bajos se presentaron a principios de marzo (25%), principios de mayo (25%) y junio (20.8%) (Figura 1b).

En este huerto durante el ciclo 2013, el número de ninfas parasitadas fue 49.9 %, dato menor con referencia al porcentaje de parasitismo encontrado en el mismo mes en el ciclo 2012; esta disminución pudo ser causada por una aplicación de insecticida Imidaclorprid, realizada en los primeros días de enero, la cual coincidió con la aparición de los primeros adultos de *T. aguacate*, lo que probablemente impidió que éstos ovipositaran y como consecuencia se tuvieron bajas poblaciones de ninfas para ser parasitadas. Resultados similares reportaron Rodríguez-Palomera *et al*. (2012), quienes no detectaron la presencia del parasitoide *Tamarixia radiata* en un huerto de cítricos en Veracruz, México y lo atribuyeron a las aplicaciones periódicas de Imidaclorprid que se realizaron durante el periodo de su investigación.

Figura 1. Porcentajes de parasitismo en larvas de 4° y 5° instar de *Trioza aguacate* ocasionado por *T. aguacatensis*. Huerto Los Gemelos, El Tarascón, municipio de Salvador Escalante, Michoacán. a) ciclo 2012, b) ciclo 2013
En el huerto San Lorenzo, en el ciclo 2012 se contaron 594 ninfas del psílido, de las cuales 550 eran ninfas pequeñas y 44 fueron ninfas de cuarto y quinto instar, de las cuales 17 estaban parasitadas. En el ciclo 2013, se contabilizó un total de 1,374 ninfas, de las cuales 1,290 eran ninfas chicas y 84 ninfas de cuarto y quinto instar; de estas últimas 39 estaban parasitadas. En este huerto, los niveles de parasitismo estuvieron entre 22.5 y 60% en el ciclo 2012. En el muestreo realizado en abril se alcanzó un porcentaje de parasitismo del 60% y la densidad de ninfas de cuarto y quinto instar fue baja. En el mes de mayo se presentó el pico de máxima población de ninfas y se mostró un porcentaje de parasitismo de 22.2% (Figura 2a). En el mismo huerto, durante el ciclo 2013 los niveles de parasitismo fueron de 14.3 y 66.7%. Los porcentajes de parasitismo más altos fueron en mayo (59.3 y 66.7%) y junio (66.7%) y los más bajos se presentaron en marzo (25%) y abril (14.3%) (Figura 2b).

Se puede concluir que en el huerto Los Gemelos, se alcanzaron niveles de parasitismo del 33.3 al 93.8 % en 2012, mientras que en el ciclo 2013 estuvieron entre el 20.8 y 60 %. En el huerto San Lorenzo, se alcanzaron porcentajes de parasitismo de 22.5 al 60 % en el ciclo 2012, mientras que en el ciclo 2013, estuvieron entre 14.3 y 66.7 %.

Literatura citada
Hollis, D., Martin, J. H., 1997. Jumping plantlice (Hemiptera: Psylloidea) attacking avocado pear trees, *Persea americana*, in the New World, with a review of

ESTRATEGIAS AGROECOLÓGICAS PARA LA PRODUCCIÓN DE JITOMATE: GENOTIPOS CRIOLLOS Y CONTROL BIOLÓGICO COMO BASE.

Hipolito Cortez Madrigal
Autor de correspondencia: correo hcortezm@ipn.mx

El jitomate Solanum lycopersicum L. es después de la papa la hortaliza más cultivada en el mundo, y en México su empleo en la alimentación tiene fuerte arraigo cultural; el país es uno de los principales productores mundiales del cultivo (FAOSTAT, 2016). El jitomate es uno de los cultivos con mayor problemática fitosanitaria y la principal estrategia para resolverla ha sido con productos químicos organosintéticos (King y Saunders, 1984). El manejo integrado de plagas plantea diversas estrategias; entre otras, la resistencia vegetal y el control biológico (Metcalf

El estudio se estableció en Jiquilpan, Mich. ubicado a 19° 59’ 39” latitud N, y 102° 43’ 2” longitud O. Se utilizaron cinco genotipos criollos de crecimiento indeterminado, previamente caracterizados como tolerantes a plagas y enfermedades: Riñón-Michoacán (R-Mich), Riñón-Oaxaca (R-O), Riñón-Chico (R-Ch), Acostillado-Mascota (A-M) y Cereza Chiapas (C-Ch). Como control se utilizó el cv. comercial “Rio grande” (R-G). Se estableció un vivero en charolas de unicel de 250 cavidades, protegidas con malla anti-áfidos. Se aplicó *Bacillus subtilis* + *Trichoderma* sp. (SUBTITRICO®, bt agroindustrial, Morelia, Mich., México) para la prevención de enfermedades fúngicas. Las plantas fueron trasplantadas (14 de sep.) al área central de un terreno (26 x 11 m) establecido con maíz criollo (26/07).

El diseño fue en bloques completamente al azar, con seis tratamientos (genotipos) y tres repeticiones (10 plantas). La plantación fue a 60 cm entre planta y 75 cm entre surco. El maíz fue retirado en etapa de elote y a partir del 16 de octubre (106 días post-siembra; 30 días después del jitomate) solo permaneció una barrera de maíz. Con excepción del acaro *Aculops lycopersici* Tryon (Eriophyidae) y la cochinilla (Crustacea), no se usaron plaguicidas orgánicos sintéticos. *B. subtilis* + *Trichoderma* 10 ml/L fue utilizado para la prevención de enfermedades fúngicas. Se aplicó fertilizante triple 16 (NPK; 16 g/planta). Al concluir el periodo de lluvias, se instaló un sistema de riego por goteo. El 11 de octubre se distribuyeron dentro de la plantación, 28 macetas con plantas de *Asclepias curassavica* L (Asclepiadaceae).

Se practicaron muestreos semanales de las principales plagas del jitomate; al inicio, mediante la revisión total de las plantas (10); cuando hubo ramas, solo se revisaron cinco plantas, considerando tres hojas/rama/tres ramas. Se registraron los fitófagos y enemigos naturales asociados a *Asclepias*. En el centro del terreno se colocó un dispositivo para la conservación e incremento de parasitoides de ninfas de la
La paratrioza *Bactericera cockerelli* (Sulc; Hem: Triozidae), donde semanalmente se colocaron foliolos con ninfas de la plaga; algunas se llevaron al laboratorio para registrar niveles de parasitismo.

Los resultados se analizaron mediante el conocimiento biológico de las especies, y análisis de varianza (ANVA). La separación de medias fue mediante Tukey, 0.05. Se evaluó la producción de maíz y jitomate.

Los principales insectos plaga registrados fueron el complejo de mosca blanca de las especies *Trialeurodes vaporariorum* Westwood y *Bemisia tabaci* Gennadius (Hem: Aleyrodidae), y la paratrioza *B. cockerelli*. Otras plagas del cultivo fueron esporádicas. La mosca blanca se registró 15 días después del trasplante del jitomate (28/09/17, aun con presencia de maíz) con fluctuaciones intermitentes, con su máximo nivel en diciembre (Figura 3A). Las poblaciones fueron relativamente bajas (3.59 adultos/planta) en la variedad más susceptible (A-M;). No se registraron síntomas de enfermedades virales.

B. cockerelli apareció aproximadamente 40 días después de la plantación (26/10/17), y una vez establecida incrementó sus población, con sus máximos niveles en el mes de diciembre (Figura 3B). Sus poblaciones pueden considerarse bajas, con una media de 0.7. 0.7 y 0.89 masas de huevos, ninfas y adultos/planta, respectivamente en una de las variedades más susceptibles (R-Ox). Todas las plantas presentaron la sintomatología de la enfermedad conocida como “permanente” la que se sabe es transmitida por *B. cockerelli*.

Figura 3. Distribución temporal de mosca blanca (A) y *Bactericera cockerelli* (B) en los genotipos más susceptibles (A-M y R-Ox, respectivamente).*Trasplante; Asclepias ; barrera de maíz ; dispositivo ; Entomophthorales .
La baja incidencia de plagas en jitomate se puede explicar por la resistencia de los genotipos y la diversificación vegetal utilizada; ésta favoreció la conservación e incremento de enemigos naturales. Destacó la especie *Trichogramma* sp. asociada a huevos de la mariposa monarca *Danaus plexippus* Fabricius (Lep: Nymphalidae). Durante el estudio se registraron hasta 70 huevecillos de monarca/muestreo. Esa pudiera ser una de las causas de la baja incidencia de plagas de lepidópteros registradas.

En este reporte se añade un ácaro fitófago de la familia Eriophyidae asociado a *A. curassavica*, probablemente nueva especie. Como depredadores y nuevos registros en *Asclepias* se añaden larvas de dípteros (prob. Cecidomyiidae), *Stethorus* sp. (Coleoptera: Coccinellidae), y ácaros de la familia Phytoseiidae.

El dispositivo para la conservación del parasitoide de ninfas de *B. cockerelli Tamarixia triozae* (Burks; Hym: Eulophidae) mostró ser efectivo. Algunas muestras confirmaron niveles de parasitismo >80%. Adicionalmente, en noviembre y diciembre se registró la incidencia de hongos entomófthorales en adultos de paratrioza; la exploración gráfica sugiere que el hongo fue factor importante de regulación de adultos de *B. cockerelli* en esos periodos (Figura 3B).

Los mejores genotipos en términos de resistencia y producción fueron R-Ch, R-Mich. y A-M (Figura 4). El rendimiento de los genotipos criollos de jitomate mostró una correlación inversa altamente significativa (P≤0.05, r = -0.75 hasta r = -0.99) con la incidencia de las principales plagas. Los resultados muestran la factibilidad de producir jitomate de manera sustentable con base en variedades criollas y la conservación de enemigos naturales mediante las estrategias evaluadas.

Literatura Citada

SECCIÓN: PLAGAS CUARENTENARIAS

MODELOS ESTADÍSTICOS PARA ESTIMAR LA INCIDENCIA Y EL RIESGO RELATIVO DE PLAGAS CUARENTENARIAS.

Martha Elva Ramírez-Guzmán

Autor de correspondencia: correo martharg@colpos.mx

Algunas preguntas relevantes que podrían guiar la búsqueda de un modelo para estimar la incidencia y riesgo relativo de plagas cuarentenarias asociadas a importaciones de productos agrícolas, podrían ser: ¿Cuál es el número de detecciones predichas por kg importados?, ¿Cuáles plagas tienen probabilidad de exceder las cero detecciones P[X>0]? y una vez que se han identificado ¿Cuál es el número de detecciones esperadas?, ¿Cuál es el riesgo relativo RR=O/E de una plaga en particular?. Para responder a estas preguntas, se propusieron los siguientes modelos para modelar datos de conteo con distribución asimétrica y exceso de ceros (McCullagh and Nelder, 1989), características de los datos de plagas cuarentenarias. Distribución Poisson para identificar las oficinas de inspección fitosanitarias (OISA´s) de mayor riesgo de introducción de plagas, regresión binomial negativa (NB) para comparar la tasa de incidencia de varios tipos de plagas cuarentenarias y para predecir el número esperado de detecciones en función de la cantidad de productos importados (kg). Regresión Hurdle para identificar las plagas que tienen una probabilidad de cero detecciones, así como aquellas que la exceden. Varias estimaciones empíricas de Bayes (Cressie, 1992), así como el modelo de regresión bayesiana aditiva estructurada (STAR) y el modelo autorregresivo condicional (Best, et al., 2005; Klein et al., 2014) para producir un mapa de riesgo de la plaga de mayor incidencia en territorio mexicano. Los resultados fueron obtenidos utilizando el software R de acuerdo a Zeileis et al. (2008) y Zeileis y Croissant (2010). Los resultados indicaron que Nuevo Laredo, Piedras Negras, Progreso, Veracruz y Altamira son las OISA´s de mayor riesgo,

Espacio en blanco
dado que el límite de confianza inferior estimado con la distribución Poisson excedió el máximo esperado (Figura 1). Las tasas de incidencia de plagas fueron de 5.98 veces para malezas, 2.18 para nematodos, 1.58 para bacterias, 1.1 para virus e insectos y 0.02 para protozoos, viroides y mollicute, con respecto a la tasa de incidencia de ácaros (1.1). Se encontró que las detecciones se incrementaron en 17.43 y 8.19 veces si los bienes llegan a frontera y puerto, respectivamente, con respecto al aeropuerto (0.27). Las detecciones aumentan en 8.93, 7.81, 7.72, 7.11, 6.48 veces para cebada, papa, linaza, lenteja, avena con respecto a la tasa de ajos (1). Las detecciones predichas para los productos importados fueron 6, 4.003, 1.243, 1.112, 0.826, 0.735, 0.686, 0.023, 0.008 para malezas, nematodos, hongos, bacterias, virus, ácaros, insectos, protozoos, viroides y mollicute por cada kilogramo importado a partir de (1.132.904 kg). La regresión de Hurdle reportó que malezas, nematodos, bacterias, hongos y virus tuvieron una probabilidad $P[Y> 0]$, lo que indica que la plaga estará presente en futuras importaciones. La intensidad esperada de estas plagas fue de 2.043, 1.668, 0.552, 0.499 y 0.481, respectivamente.

Figura 1. OISA´s con mayor probabilidad de detección de malezas.

En particular, los mapas de riesgo relativo de malezas ($RR = O / E$, O: conteos observados, E: detección de conteo esperadas) fueron elaborados con varios
estimadores Bayes empíricos como EBPG (con modelo de Poisson para verosimilitud y gamma para distribución a priori), EBLN (con distribución lognormal para verosimilitud y apriori), EBMarshal y EBMrshloc (Marshall, 1991) ambos con una matriz de vecindario (W), CarBayes que es un modelo autorregresivo condicional con una matriz de vecindad y un modelo de regresión PGBayesX con funciones spline (con Modelo de Poisson para verosimilitud y gamma para a priori). El último podría ser utilizado para incluir variables climáticas. El mejor modelo fue PGBayesX dado que mostró un criterio de información de desviación menor (DIC) en contraste con CarBayes, también las predicciones de RR de PGBayesX mostraron una distribución simétrica (Figura 2). Si RR excede 1, se ha identificado un área de plagas de alto riesgo. Los riesgos relativos reportados por este modelo fueron 40% para Chihuahua y Sinaloa, mientras que para BCS, Tamaulipas y Sonora fue del 30% (Figura 3). Se concluye que nuevos desarrollos estadísticos ofrecen una opción para estimar con mayor precisión el riesgo fitosanitario por plagas cuarentenarias.

![Figura 2. Box plots de residuales de los modelos SMR, EBPG, EBLN, EBMarsall, EBrshloc, PGBAYESX y CARBayes.](image)
Figura 3. Mapa de riesgo por malezas.

Literatura Citada

Los especímenes adultos de *Conotrachelus* utilizados en el estudio fueron capturados directamente de sus respectivos hospederos en distintas localidades de México. De igual forma, se examinó material de colecciones entomológicas del Colegio de Postgraduados (CP), y del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) campus Celaya. En el laboratorio, los insectos fueron sacrificados con acetato de etilo; posteriormente se montaron en alfileres entomológicos o fijados en alcohol al 70% para su empleo en estudios posteriores. Para la descripción de adultos se utilizó la terminología de Lyal (2017).

El material examinado se encuentra en la colección de insectos de Entomología Agrícola del Colegio de Postgraduados campus Montecillo, en el Estado de México. En los resultados que obtuvimos se muestra que los caracteres que permiten la diferenciación entre adultos incluyen los márgenes laterales del protórax y el área humeral. Sin embargo, pudimos demostrar que la identificación por medio de la genitalia masculina y femenina resulta ser más efectiva. El edeago y el esternito VIII fueron las estructuras que presentaron notorias diferencias, coincidiendo con lo reportado previamente por Castañeda *et al.* (2007) para el caso de especies del género *Heilipus* asociados al aguacate. La genitalia femenina demuestra ser una herramienta taxonómica adicional para la separación de especies y puede ser utilizada con seguridad en la ausencia de especímenes macho. Estas especies mostraron dimorfismo sexual; la longitud del rostrum y la inserción antenal constituyeron los principales caracteres de diferenciación intraespecífica, sin embargo, *C. copalensis* no mostró diferencias bien marcadas entre sexos. La coloración en las especies puede ser distintiva en cada una; sin embargo, pueden variar por diferentes causas intrínsecas o extrínsecas, por lo tanto, la genitalia resulta ser la herramienta más confiable en la identificación.

Literatura citada

Conotrachelus posticatus (COLEOPTERA: CURCULIONIDAE)
PLAGA CONTAMINANTE EN AGUACATE DE EXPORTACIÓN.

José Manuel Pineda-Ríos¹, Daniel Bravo-Pérez¹, Clemente de Jesús García-Avila¹*, Isabel Ruiz-Galván¹, José Abel López-Buenfil¹, Francisco Javier Trujillo-Arriaga²

¹ Dirección del Centro Nacional de Referencia Fitosanitaria-SENASICA-SAGARPA. Km. 37.5 de la Carretera Federal México-Pachuca, Tecámac Estado de México, México.

²Dirección General de Sanidad Vegetal- SENASICA-SAGARPA. Boulevard Adolfo Ruiz Cortines, No. 5010, Piso 4, Col. Insurgentes Cuicuilco, Coyoacán, Ciudad de México, México.

*Autor de correspondencia: correo clemente.garcia@senasica.gob.mx

Espacio en blanco

Los Curculionoidea, mejor conocidos como gorgojos o picudos, representan uno de los grupos con mayor número de especies del reino animal (Oberprieler *et al*., 2007); tan solo en México, se han descrito 603 géneros y 3 594 especies (17 y 5.8%, respectivamente, del total mundial), cerca de un 40 % de las especies son endémicas, pertenecientes a las familias: Nemonychidae, Anthribidae, Belidae, Attelabidae, Brentidae y Curculionidae (Morrone, 2014; Ordóñez-Reséndiz, 2008), de las cuales, aproximadamente el 85 % pertenecen a la familia Curculionidae, que incluye al género *Conotrachelus*, con 1 100 especies a nivel mundial; en México se reportan 93 especies (O’Brien y Wibmer, 1982, 1984; Wibmer y O’Brien, 1989), algunas se documentan como plagas importantes de frutales tropicales y subtropicales como aguacate, guayaba y tejocote (Muñiz-Merino *et al*., 2012; Salas-

Este escarabajo se asocia a frutos caídos; se le ha encontrado en frutos de tejocote (Crataegus) sobre el suelo; se menciona que las larvas pueden habitar en hojas y alimentarse de frutos caídos de nogal (Carya sp.), bellotas de roble castaño y roble blanco (Quercus sp.); además, de ciruelo silvestre (Prunus). C. posticatus se relaciona únicamente con los géneros Quercus, Carya, Prunus y Crataegus (información compilada por Frederick, 1942; Whiteford, 1972). También se ha mencionado que las larvas habitan dentro de las agallas de filoxera en las hojas de nogal americano (Beutenmuller, 1893; información compilada por Frederick, 1942). Este escarabajo es atraído por algunos compuestos derivados de la fermentación de vegetales, principalmente de frutos; además, se alimenta de materia orgánica en degradación (Muñiz, 1998).

En 2016, C. posticatus fue detectado como contaminante en empresas de empaque de aguacate, áreas urbanas y contenedores de frutos de aguacate (Persea americana) en Michoacán, México; no se han encontrado reportes donde se asocie al barrenador pequeño de la bellota con daños por alimentación de plantas o frutos (adheridos o caídos) de la familia Lauraceae, por lo que no existe actualmente regulación para éste insecto, ni está contemplado dentro del listado de plagas reglamentadas para la exportación de aguacate de México hacia los Estados Unidos, Hawái y Puerto Rico, ni en ningún otro plan comercial; sin embargo, la detección de esta especie ha sido motivo de rechazo de algunos embarques en la
frontera con EE.UU., al ser confundido con las especies de Conotrachelus reglamentadas que se reportan asociadas al aguacate comercial en México, C. aguacatae y C. perseae. El Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA) ha realizado propuestas de monitoreo y control para C. posticatus en las zonas productoras de aguacate, así como la generación de documentos técnicos-científicos de referencia de dicha especie.

Literatura Citada

PLAGAS REGULADAS PARA LA EXPORTACIÓN DE FRUTILLAS A CHINA.

Clemente de Jesús García-Avila1*, Isabel Ruiz-Galván1, Daniel Bravo-Pérez1, José Manuel Pineda-Ríos1, José Abel López-Buenfil1, Francisco Javier Trujillo-Arriaga2.

2Dirección General de Sanidad Vegetal- SENASICA-SAGARPA. Boulevard Adolfo Ruiz Cortines, No. 5010, Piso 4, Col. Insurgentes Cuicuilco, Coyoacán, Ciudad de México, México.

*Autor de correspondencia: correo clemente.garcia@senasica.gob.mx

Espacio en blanco

Las berries o frutillas se han posicionado en México entre los cuatro principales productos agroalimentarios que se exportan hacia el mundo (SAGARPA, 2016a), el volumen de producción de berries (zarzamora, frambuesa y arándano), es de alrededor de 390.2 mil toneladas, los principales estados productores son Michoacán, Jalisco, Baja California, México y Colima, quienes aportan más del 95 % de la producción nacional; siendo Michoacán quien contribuye con el 67 % (SIAP, 2018). En noviembre de 2014 se firmó el Protocolo de requerimientos fitosanitarios para la exportación de zarzamora y frambuesa de México a China y en noviembre del 2016 el Protocolo de exportación de arándanos, donde se establecen las medidas fitosanitarias que se deben cumplir para garantizar la ausencia de las plagas cuarentenarias para China; para el caso de zarzamora y frambuesa las
plagas de artrópodos regulados son: *Phytonemus pallidus*, *Drosophila suzukii* y *Ceratitis capitata* (Plaga ausente); en arándano son: *Grapholita packardi*, *Diaspidiotus ancyclus*, *Lepidosaphes ulmi* y *Lygus hesperus*. Para dar cumplimiento a lo establecido en los protocolos de exportación de berries de México a China, el SENASICA a través de la Dirección General de Sanidad Vegetal (DGSV), realiza actividades de capacitación para el monitoreo, reconocimiento y manejo de las plagas a técnicos de las empresas exportadoras y de la Juntas Locales de Sanidad Vegetal que estén involucrados en el proceso de exportación de berries a China (SAGARPA, 2015); además, se les proporciona material técnico de referencia que contempla información relevante de biología, hábitos, daños y métodos de control de las plagas reguladas. Debido a lo anterior, desde enero de 2015 se realiza la exportación de berries, de los estados de Jalisco y Michoacán a ese país asiático, lo cual coloca a nuestro país entre los primeros tres exportadores de berries a nivel mundial, colocando a esta industria como una de las que mayor divisas genera, además de las múltiples fuentes de empleo (SRE, 2015).

Literatura Citada

El género *Ceroplastes* Gray constituye uno de los grupos más importantes y antiguos de la familia Coccidae (Marín et al., 1995). De acuerdo con Bartlett (1978), esta familia incluye algunas de las especies más dañinas de árboles frutales, árboles de sombra y ornamentales, por lo que es importante identificar las especies asociadas a los diferentes cultivos, especialmente cuando el producto es de exportación, ya que por cuestiones cuarentenarias es indispensable que cada país esté al tanto de las plagas presentes en su territorio.

Durante el periodo 2016-2017 se presentaron brotes importantes de escamas pertenecientes al género *Ceroplastes*, uno de ellos fue en el municipio de Coatepec Harinas, Estado México, en plantaciones comerciales aguacate Hass, las ramas y brotes de los árboles presentaban una infestación severa. El otro se presentó en huertos de maracuyá de varias localidades del municipio Emiliano Zapata, Veracruz, en este caso la población de escamas no era muy abundante. La presente investigación tuvo como objetivo determinar a nivel de especie las escamas cerosas del género *Ceroplastes* presentes en estos huertos.

Se eligieron sitios de colecta con incidencia de escamas cerosas. El primer sitio fue una plantación de aguacate Hass, ubicada en el Rancho el Rubí, perteneciente al municipio de Coatepec Harinas, Estado de México (18°55’15.9”N 99°45’54.0”W, a
2260 msnm) el 20 de octubre del 2016. El segundo lugar fue en huertos de maracuyá ubicados en la localidad del Coscorrón, Veracruz (19°23'59.1"N 96°33'57.2"W, a 692 msnm) el 16 de Julio del 2017. En el laboratorio se eligieron las ramas con las escamas mejor preservadas. En el laboratorio se eligieron las ramas con las escamas mejor preservadas. Las muestras se observaron con un microscopio estereoscópico con cámara integrada (Discovery v20) y se tomaron fotografías de sus características morfológicas de importancia taxonómica en fresco. Posteriormente las escamas se retiraron de las ramas y se colocaron en frascos con alcohol al 70% para su conservación. Para los montajes se seleccionaron 20 hembras adultas jóvenes de cada especie y se les retiró la capa de cera cuidadosamente para no dañar sus estructuras y con una aguja de disección se les hizo una incisión en la región lateral del abdomen para extraer más adelante el contenido de su interior. Se colocaron de dos a tres escamas (según tamaño) en tubos Eppendorf que contenían hidróxido de potasio (KOH) al 10%. Posteriormente los tubos se calentaron a 80°C durante 18 minutos en el termoblock (AccuBlockTM, Digital Dry Bath, Labnet International Inc.) para su maceración. Pasado este tiempo, se retiraron de los tubos y bajo microscopio estereoscópico se extrajo el contenido del cuerpo para trabajar sólo con la cutícula; después se sumergieron en las sustancias que a continuación se mencionan por un lapso de 5 minutos en cada una: alcohol-ácido acético para transparentarlas, fucsina ácida para teñirlas, alcohol al 70%, 80%, 96% y 100% respectivamente, aceite de clavo para aclarado y finalmente se montaron en vista dorsal con Bálsamo de Canadá en portaobjetos. Para su identificación se utilizaron las claves de Gill (1988) observando los montajes en un microscopio biológico compuesto (American Optical Micro Star). Se tomaron fotografías de las características de importancia taxonómica haciendo uso de un microscopio biológico compuesto (RossBach MG-IIT) y de una cámara digital (Canon 5D de 21 MPX). Finalmente, para confirmar los resultados, los especímenes se enviaron con el Dr. Héctor González Hernández especialista en taxonomía de escamas.
Las especies de escamas cerosas identificadas fueron *Ceroplastes cistudiformis* Cockerell (Hemiptera: Coccidae) asociada al aguacatero y *Ceroplastes cirripediformis* Comstock (Hemiptera: Coccidae) asociada a maracuyá.

En los ejemplares en fresco ambas especies de escamas se pueden diferenciar debido a que *C. cistudiformis* posee una cera de coloración amarillo-café (más oscura), los filamentos de cera seca no se logran observar en los ejemplares adultos y los límites de las placas están fuertemente divididos por líneas cafés (lo que le dan apariencia de tortuga) además de que poseen líneas verticales abundantes delgadas y cafés (Figura 1), en *C. cirripediformis* la cera es de coloración grisácea o blanuzca sucia y los límites de las placas no están fuertemente delimitados (Figura 2). En los ejemplares montados el principal rasgo de diagnóstico es que *C. cistudiformis* es la única especie donde todas las setas espiraculares están confinadas a la depresión espiracular (Figura 3A) y están arregladas en 5 o 6 líneas irregulares (Figura 3D); a diferencia de *C. cirripediformis* cuyas setas espiraculares están extendidas a lo largo del margen más allá de los límites de la depresión espiracular (Figura 4A y B) y arregladas en 3 líneas irregulares (Figura 4C). Además, según Gimpel *et al.* (1974), en *C. cistudiformis* las antenas son normalmente de 7 segmentos (Figura 3B); y las setas espiraculares son equiláteras (Figura 3C) y *C. cirripediformis* presenta poros multiloculares en los segmentos anteriores del abdomen y el tórax (Figura 4D) y no tiene ductos marginales filamentosos en la región ventral.

![Figura 1. Ceroplastes cistudiformis. Hembras en ramas jóvenes de aguacate.](image1)

![Figura 2. Ceroplastes cirripediformis. Hembras adultas en tallo de maracuyá.](image2)
Figura 3.- Montaje de hembras de *Ceroplastes cistudiformis* en aguacatero. A) Setas espiraculares confinadas a la depresión espiracular; B) Antenas de 7 segmentos; C) Setas espiraculares de forma equilátera; D) Setas espiraculares arregladas en 5-6 líneas irregulares.

Figura 4.- Montaje de hembras de *Ceroplastes cirripediformis* en maracuyá. A y B) Setas espiraculares extendidas a lo largo del margen más allá de los límites de la depresión espiracular; C) Setas espiraculares arregladas en 3 líneas irregulares; D) Presenta poros multiloculares en los segmentos anteriores del abdomen.

Literatura citada

Gill, R. J. 1988. The scale insects of California. California Department of Food and Agriculture Sacramento, California, USA. pp: 11-19

Gimpel, W. F., D. R. Miller and J. A. Davidson. 1974. A systematic revision of the wax scales, genus *Ceroplastes*, in the United States (Homoptera; Coccoidea; Coccidae). Agricultural Experiment Station University of Maryland. pp: 2-42

El ajo (Allium sativum L.) es una planta de importancia mundial y nacional por su amplia distribución, extensa superficie cultivada y su producción. Su principal aprovechamiento lo encontramos en el bulbo. En Nuevo León en los últimos once años se ha incrementado la superficie sembrada, pasando de 38 ha en 2007 a 257 ha en 2018 (SIAP, 2018). Sin embargo, este cultivo es propenso a enfermedades causadas por diferentes virus que se van acumulando ciclo tras ciclo en el cultivo debido a su propagación vegetativa, y provocan la reducción en el tamaño y la calidad del bulbo (Pérez et al., 2010). Uno de los virus reportados es el de la mancha amarilla del iris (Iris Yellow Spot Virus, IYSV), perteneciente al género Tospovirus, familia Bunyaviridae, importante patógeno emergente de especies del género Allium en todo el mundo. Los síntomas causados por este virus consisten en manchas de color pajizo y lesiones en forma de diamante con islas cloróticas verdes en el ajo, las cuales se fusionan para formar parches grandes, marrones y necróticos en las hojas (Karavina et al. 2016). Uno de los vectores relacionado con este virus es Thrips tabaci Lindeman (Thysanoptera: Thripidae), el cual puede adquirir el virus en su etapa larval y puede seguir infectando hasta llegar a adulto al alimentarse (Kritzman et al. 2001). En Nuevo León no existe información sobre la situación sanitaria del cultivo de ajo y menos aún sobre enfermedades ocasionadas por virus.
por lo tanto, se desconocen también los daños actuales y potenciales de los virus y sus vectores, es por esto que se planteó en el presente trabajo como objetivo estimar la incidencia de trips y del virus IYSV en cultivos de ajo y trips en Aramberri, N.L.

Durante el ciclo agrícola otoño 2017-invierno 2018 se realizó a los 162 días después de la siembra un muestreo en una plantación de ajo de 1 ha de superficie ubicada en el municipio de Aramberri, Nuevo León (24°20'07.49"N, 99°56'24.44"O a una altitud de 1,962 msnm). Se utilizó la metodología de muestreo de "cinco de oros" la cual consiste en tomar muestras de cinco puntos diferentes dentro de la plantación (uno al centro y los cuatro restantes en las esquinas del predio). En cada punto de muestreo se eligieron cinco plantas, para un total de 25 plantas recolectadas las cuales se colocaron en bolsas de polietileno con cierre hermético, se etiquetaron y trasladaron dentro de una hielera al laboratorio de Fitopatología de la Facultad de Agronomía de la UANL. Las plantas se utilizaron tanto en la identificación y conteo de trips como para la detección del virus.

Se realizó una revisión minuciosa de las muestras (hojas de las plantas) bajo el microscopio estereoscopio para colectar los trips presentes usando para ello un pincel fino (No. 000). Los especímenes encontrados fueron conservados en alcohol al 70%. Para la identificación se realizaron montajes en portaobjetos usando la técnica de Mound y Kibby (1998) modificada, la cual consiste en un aclaramiento de los especímenes en ácido láctico durante 10 min a 60 ºC, posteriormente se montaron en glicerina y se colocaron a 40 ºC durante 5 días en una estufa (Lab companion modelo IB-01E). Posteriormente se usaron las claves taxonómicas de Metcalf y Flint (1962), y Triplehorn y Johnson (2005) para determinar el género de los especímenes.

El diagnóstico del virus (IYSV) tanto en plantas como en insectos se realizó utilizando la técnica RT-PCR, siguiendo el protocolo de Uga y Tsuda (2005) modificado. Primero se extrajo el ácido ribonucleico (ARN) a partir de 50 mg de tejido vegetal de las hojas y de un grupo de trips en número variable utilizando el método del TrizolMR (Molecular Research Center, Inc.). Después se realizó la
síntesis de ADN complementario (ADNc) mediante reacciones de reverso transcripción (RT) seguido por la amplificación del ADNc mediante la técnica PCR. Los iniciadores utilizados fueron: IYSV-459 (5’-ACCAGAGGAAGCCCGCAG-3’) y TOS-R15 (5’-GGGAGAGCAATYWGKWYR-3’) esperando un producto final de 459 pares de bases (pb).

El total de insectos colectados fueron 544 en las 25 plantas recolectadas, el 56% corresponde a adultos y 44% a ninfas (figura 1). De los adultos, el 95% corresponden a Thrips spp., y el 5% fueron Frankliniella spp. Esto demuestra una alta incidencia de trips ya que el 100% de las plantas contaba con la presencia de estos insectos. Por otra parte los resultados del diagnóstico del virus IYSV mediante RT-PCR de las hojas de las plantas y de los trips resultaron negativos. Con respecto al género Frankliniella, no se detectó al virus IYSV, aunque Kritsman et al. (2001) ya habían reportado que no son transmisores del virus. Todas las muestras de trips analizadas tampoco dieron reacción positiva al IYSV. El resultado anterior podría atribuirse a que la parcela de estudio no tenía en sus alrededores cultivos de cebolla ni tomate, que son especies más susceptibles al IYSV.

De acuerdo con lo anterior, se concluye que en la localidad de estudio, durante el ciclo y las condiciones prevalecientes del cultivo de ajo, se presentó una incidencia de trips de un promedio de 22 especímenes por planta, y que ni las plantas ni los
insectos eran portadores del IYSV, pero se requiere de mayores estudios para determinar la presencia de otros virus.

Literatura citada

Dactylopius confusus (COCKERELL), (HEMIPTERA: DACTYLOPIIDAE): PRIMER REGISTRO DE SU PRESENCIA EN MICHOACÁN, MÉXICO.

Arturo Ramírez-Cruz1, Héctor González-Hernández2

1Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Michoacán. Instituto Politécnico Nacional. México.

*Autor de correspondencia: correo aramirezc@ipn.mx

En abril de 2017, en un paraje en las afueras de la ciudad de Morelia, Michoacán, México, sitio con características semiurbanas (19º39´50.5´´N, 101º13´08.2´´O; 1920 msnm), se colectaron tanto ninfas como adultos de un Dactylopiidae infestando los cladodios de plantas silvestres de *Opuntia tomentosa* Salm-Dyck (Caryophyllales: Cactaceae). Los insectos se colocaron en alcohol 70%; posteriormente se realizaron preparaciones fijas de las hembras adultas. Después de la identificación taxonómica de éstas, se determinó que se trataba de ejemplares
de la especie *Dactylopius confusus*, lo cual representa el primer reporte de la presencia de esta especie en el Estado de Michoacán, México.

Las características principales que permitieron la identificación de los ejemplares reportados en este trabajo fueron: poros quinqueloculares de bordes anchos asociados a conductos; setas modificadas más grandes que otras, cuyo tamaño aumenta hacia el abdomen; anillo anal desarrollado; margen del atrio de los espiráculos, dentado.

Se ha sugerido que debido al gran número y la amplia distribución de las Cactaceae hospederas de Dactylopiidae en México, condicione que el número de especies registradas de esta familia se incremente en los diferentes Estados de la República Mexicana. Por lo anterior, es necesario continuar realizando prospecciones, tanto en el Estado de Michoacán, como en el resto de los Estados, con el objetivo de definir con más claridad, tanto el número de especies, como la distribución de Dactylopiidae presentes en México.
SECCIÓN: ESTRATEGIAS PARA EL MANEJO DE PLAGAS

ESQUEMA SENCILLO PARA ENTENDER CÓMO SE DESARROLLA LA RESISTENCIA NO METABÓLICA.

Ángel Lagunes Tejeda¹*, J. Concepción Rodríguez Maciel¹, Gonzalo Silva Aguayo².

¹Colegio de Postgraduados, Km 36.5 Carr. México-Texcoco. Texcoco, México, C.P. 56230.
²Universidad de Concepción, Facultad de Agronomía, Vicente Méndez 595, Casilla 537, Chillán, Chile.

*Autor de correspondencia: correo alagunes@colpos.mx

La resistencia a insecticidas puede ser metabólica o no-metabólica. Se presenta por medio de láminas una forma sencilla, no exhaustiva, para entender cómo se desarrolla la resistencia no-metabólica en insectos y ácaros.

ANTIXENOSIS EN 11 GENOTIPOS DE SORGO PARA *Melanaphis sacchari* (HEMIPTERA: APHIDIDAE).

María Alejandra Payán-Arzapalo¹*, Roberto Gastélum-Luque¹, Carlos Enrique Ail-Catzim², Tirzo Paúl Godoy-Angulo¹, Juan Eulogio Guerra-Liera¹, Moisés Gilberto Yáñez-Juárez¹

¹Universidad Autónoma de Sinaloa, Facultad de Agronomía Km. 17.5, carretera Culiacán-el Dorado C.P. 80000, Culiacán, Sinaloa, México.
²Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, carretera a Delta s/n, C. P. 21705, ejido Nuevo León, Baja California, México.

*Autor de correspondencia: correo ingeniera_arzapalo@hotmail.com

En México en el 2013 se detectó a *Melanaphis sacchari* (Hemiptera: Aphididae) por primera vez en sorgo en el norte de Tamaulipas, los daños causados por esta plaga fueron severos, con pérdidas que fluctuaron entre el 30 y 100% (Rodríguez del Bosque y Terán 2015). Para el manejo de esta plaga en México se han usado diferentes estrategias de control, pero el uso genotipos resistentes puede ser uno de los más efectivos, sin causar daños en el medio ambiente y brindándole al productor un genotipo con alto rendimiento de grano aún con la presencia del áfido.
La antixenosis o no-preferencia es una estrategia de resistencia en las plantas, por la cual estas evitan que las plagas las utilicen para oviposición, alimento o refugio. Afectando en forma adversa el comportamiento del insecto no permitiéndole parasitar ciertos genotipos de sus hospedantes (Painter, 1951). Se sabe que existen genotipos de sorgo con características antixenoticas que les confieren tolerancia al ataque de *M. sacchari* (Scott *et al.*, 2016; Perales-Rosas, 2017), sin embargo es importante evaluar otros genotipos que presenten este mecanismo de resistencia. Por tal motivo el objetivo de esta investigación fue estudiar efecto de antixenosis en 11 genotipos de sorgo para *M. sacchari* a nivel de laboratorio.

Se evaluaron los genotipos Perla 101, Sinaloense 202, Gavatero 203, Costeño 201, Cow Vittle, Gayland Ward 9320, NK 180, DKS 26, DKS 2805, Gayland Ward 9417 y Gayland Ward 1160. Se colocó aleatoriamente una planta (Segunda hoja expandida) de cada uno de los genotipos en una estructura de plástico circular de 20 pulgadas de diámetro, posteriormente se depositaron en el centro de la estructura 150 hembras adultas de *M. sacchari*, para que eligieran libremente a su huésped (Castro *et al.*, 1998). La estructura se cubrió con tela organza y después de 24, 48 y 72 h de exposición se contabilizó el número de hembras adultas y ninfas recién nacidas de *M. sacchari* presentes en cada planta. Se utilizó un diseño completamente al azar con 11 tratamientos y 10 repeticiones. Los resultados de este experimento se sometieron a un análisis de varianza y una prueba de comparación de medias de Tukey (*P* ≤ 0.05) mediante el paquete estadístico SAS® versión 9.0. Además se estimó el índice de atracción (IA) de hembras adultas para cada genotipo estudiado con la fórmula IA=2G/G+P (Baldini y Lara, 2001) donde G= número de hembras adultas atraídas por el genotipo experimental, P= número de hembras adultas atraídas en el genotipo testigo. Y se estimó también el índice de preferencia de ninoposición (IPO), con la fórmula IPO=[(T-P)/(T+P)]*100 (Oriani *et al*. 2005). donde: T= número de ninfas nacidas en el genotipo experimental y P= número de ninfas nacidas en el genotipo testigo. Si IPO= 1 indica preferencia total y IPO= -100 indica no preferencia. El testigo utilizado fue el NK 180 por ser el genotipo susceptible.
Los genotipos DKS 26, DKS 2805 y Gayland Ward 9320 presentaron menor número de hembras adultas con valores de 0.0 a 1.9 hembras a las 24, 48 y 72 h después de la infestación (Cuadro 1). El genotipo NK 180 presentó mayor número de hembras adultas por planta con valores de 5.9, 6.0 y 4.4 hembras adultas planta\(^{-1}\) a 24, 48 y 72 h respectivamente.

Cuadro 1. Número promedio de hembras adultas de *Melanaphis sacchari* en 11 genotipos de sorgo.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th># hembras adultas planta(^{-1})</th>
<th>Índice de Atracción</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 h</td>
<td>48 h</td>
</tr>
<tr>
<td>NK 180</td>
<td>5.9(^a)</td>
<td>6.0(^a)</td>
</tr>
<tr>
<td>Sinaloense 202</td>
<td>5.4(^ab)</td>
<td>3.3(^bc)</td>
</tr>
<tr>
<td>Perla 101</td>
<td>5.1(^abc)</td>
<td>3.4(^b)</td>
</tr>
<tr>
<td>Gayland Ward 9417</td>
<td>4.7(^abcd)</td>
<td>1.3(^ed)</td>
</tr>
<tr>
<td>Gavatero 203</td>
<td>3.1(^bcde)</td>
<td>2.4(^bcd)</td>
</tr>
<tr>
<td>Cow Vittle</td>
<td>2.7(^cde)</td>
<td>1.6(^cde)</td>
</tr>
<tr>
<td>DKS 2805</td>
<td>2.6(^cde)</td>
<td>0.6(^e)</td>
</tr>
<tr>
<td>Gayland Ward 9320</td>
<td>2.3(^de)</td>
<td>0.8(^ed)</td>
</tr>
<tr>
<td>Costeño 201</td>
<td>2.2(^de)</td>
<td>1.6(^cde)</td>
</tr>
<tr>
<td>Gayland Ward 1160</td>
<td>1.9(^e)</td>
<td>1.0(^ed)</td>
</tr>
<tr>
<td>DKS 26</td>
<td>1.0(^e)</td>
<td>0.9(^ed)</td>
</tr>
</tbody>
</table>

*Valores con la misma letra son estadísticamente iguales, según (Tukey 0.05).

El número de hembras adultas por planta para los genotipos Sinaloense 202, Gayland Ward 9417 y Perla 101 a las 24 h no fueron diferentes en comparación con NK 180, pero NK 180 fue diferente con respecto a todos los genotipos a las 48 y 72 h. El índice de atracción indica que los híbridos DKS 26 y DKS 2805 fueron menos preferidos por *M. sacchari* con porcentajes de preferencia de 0 a 29%, mientras que el NK 180, Sinaloense 202 y Perla 101 mostraron de 90 a 100% de preferencia (Cuadro 1). En lo referente a la reproducción de hembras adultas, los genotipos Gayland Ward 9320, DKS 26 y DKS 2805 mostraron menor cantidad de ninfas recién nacidas a las 24, 48 y 72 h, con valores promedio de 0.0 a 1.5 ninfas planta\(^{-1}\) (Cuadro 2). En contraste el genotipo NK 180 presentó 10.7, 8.7 y 7.6 ninfas recién nacidas planta\(^{-1}\) a las 24, 48 y 72 h respectivamente. Los resultados de ambos índices indican que NK 180 es más preferido por *M. sacchari* para su alimentación y reproducción, mientras que Gayland Ward 9320, DKS 26 y DKS 2805 son los menos preferidos.

Cuadro 2. Número promedio de ninfas recién nacidas de *Melanaphis sacchari* en 11 genotipos de sorgo a las 24,48 y 72 horas después de la infestación.
Singh et al. (2004), mencionan que la antixenosis es un componente de resistencia para *M. sacchari* en genotipos de sorgo, en este estudio los genotipos Gayland Ward 9320, DKS 26 y DKS 2805 presentaron menor número de hembras adultas y menor número de ninfas recién nacidas lo cual nos indica un efecto antixenótico de estos genotipos sobre *M. sacchari*. Este efecto de antixenosis se ha reportado también en los genotipos de sorgo B11055 y R13219, ya que fueron menos preferidos por *M. sacchari* (Scott et al. 2016), además estos autores reportan tolerancia y antibiosis para *M. sacchari*, lo cual concuerda con lo obtenido en este estudio. De acuerdo a los resultados de esta investigación los genotipos DKS 26, DKS 2805 y Gayland Ward 9320 tiene potencial para su uso como una estrategia dentro de un programa de manejo integrado contra *M. sacchari*, sin embargo es necesario realizar evaluaciones a nivel de campo para confirmar la resistencia de estos genotipos a *M. sacchari*.

Literatura citada

En México se estima que anualmente se pierde entre un 5 % y 25 % del total de la producción de maíz, trigo y frijol (Hernández y Carballo, 2014), ya que los gorgojos contaminan los granos con sus excrementos y favorecen la entrada de bacterias, ácaros y hongos de almacén hasta el grado en que los granos ya no son apropiados para el consumo humano, animal ni viables para la siembra, debido a que estos últimos pueden producir micotoxinas que causan graves daños en la salud (Claridades Agropecuarias, 2016). En la agricultura de subsistencia los daños pueden ser del 10 al 60 %.

Con base en el Artículo Segundo del Decreto de la Cruzada Contra el Hambre que tiene como uno de sus objetivos minimizar las pérdidas post-cosecha y de alimentos durante su almacenamiento, transporte y comercialización, investigadores del Colegio de Postgraduados han puesto en marcha un proyecto en apoyo a este programa. Se desarrolló un producto ecológico e inocuo, llamado Granim, para el combate del gorgojo que ataca al maíz almacenado. El Granim es un bioinsecticida a base de polvos minerales (carbonato de calcio, hidróxido de calcio y puzolana) y...
polvo de Nim (*Azadirachta indica* A.) que es un árbol de la familia Meliaceae, el cual fue introducido por el Colegio de Postgraduados en su Campus Veracruz en 1989.

El Granim se mezcla con el maíz desgranado en dosis de un kg por cada 100 kg de grano, grano que se puede utilizar inmediatamente lavándolo antes de su uso. El Granim tiene un efecto combinado de sus componentes, pues cuando los insectos caminan entre los intersticios de los granos cubren su cuerpo con el polvo abrasivo lo cual raspa su cutícula y hace que pierdan humedad, además el Nim afecta sus procesos fisiológicos y comportamiento, con lo que las poblaciones del gorgojo disminuyen significativamente.

En 2013 varios municipios de los estados de México y de Veracruz fueron beneficiados con la entrega de bolsas de 5 kg de Granim. En 2016 junto con el apoyo de COFUPRO se elaboraron 5000 sacos de 5 kg de Granim, las cuales están en proceso de distribución en los estados del Sureste de México.

Literatura citada

El gusano cogollero, *Spodoptera frugiperda*, es la principal plaga tanto del maíz como del sorgo al dañar severamente el cogollo de estos cultivos. Destello 480 SC es un insecticida sistémico, y de contacto a base de Thiodicarb y Triflumuron para el control del gusano cogollero en el cultivo de maíz. Se utilizó un diseño bloques al azar con 3 repeticiones. Se evaluó el porcentaje de control y días de protección a los 3, 7, y 14 Días Después de la Aplicación (DDA) de Destello 480 SC a 0.35 L/ha comparado contra los principales competidores tales como Clorpirifos 1 L/ha, LambdaCihalotrina 0.35 L/ha, Novaluron 0.3 L/ha, Belt 0.1 L/ha + Decis a 0.125 L/ha, Spinetoram 0.1 L/ha y la mezcla de tanque Clorpirifos 1 L/ha + Permetrina 0.5 L/ha. Destello 480 SC mostró similar velocidad de acción que Clorpirifos, Belt + Decis, Spinetoram y Clorpirifos + Permetrina evaulados a los 3 DDA. Los productos como Clorpirifos, Lambda Cihalotrina, Novaluron y Spinetoram proporcionaron solo 7 días de protección. En cambio, Destello otorgó 14 días de protección al igual que Belt + Decis y Lorsban + Permetrina con un porcentaje de control igual o mayor del 80%. Destello 480 SC jugará un papel importante en el manejo del gusano cogollero en el cultivo de maíz como parte fundamental dentro de un programa de rotación de diferentes modos de acción.
INCIDENCIA Y TRAMPEO DE LA MOSCA AFRICANA DEL HIGO, *Zaprionus indianus* GUPTA (Diptera: Drosophilidae) EN CULTIVOS DE HIGO PARA EXPORTACIÓN.

Néstor Bautista-Martínez¹, Lucía Jairoth Velázquez-Moreno¹*, Carlos Patricio Illescas-Riquelme¹, Clemente de Jesús García-Ávila²

¹Colegio de Postgraduados Campus Montecillo, Montecillo, Texcoco, Estado de México.

²Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México.

*Autor de correspondencia: correo luciajairoth@hotmail.com

En México, la producción de frutos de higo ha sido principalmente en huertos familiares para autoconsumo, con mínima comercialización en mercados rurales. Actualmente, la demanda de este fruto se ha incrementado, sobre todo por la apertura de mercados extranjeros como Estados Unidos y Canadá, lo que ha ocasionado el aumento de la superficie sembrada.

En el estado de Morelos, la variedad Nezahualcóyotl ha cobrado importancia entre los productores, ya que posee frutos partenocárpicos, que no necesitan insectos polinizadores y es cultivada de manera intensiva en condiciones de invernadero sin embargo, productores de higo de esta entidad, reportaron pudriciones prematuras de frutos que fueron aumentando en número con el paso del tiempo.

Durante los meses de septiembre a diciembre de 2016, en el municipio de Temoac, Morelos, se realizaron colectas de frutos maduros y sobremaduros en plantaciones comerciales de higo variedad Nezahualcóyotl en condiciones de invernadero. De las colectas emergieron en total 1,313 moscas adultas de la familia Drosophilidae. Las especies identificadas fueron la mosca africana del higo *Zaprionus indianus* (n=1,024) (Fig. 1A y 1B), drosophila de alas manchadas *Drosophila suzukii* (n=31) (Fig. 1C y 1D) y la mosca del vinagre *Drosophila melanogaster* (n=258) (Fig. 1E y 1F). Los adultos de *Z. indianus* emergieron de los frutos maduros y sobremaduros mientras que *D. suzukii* y *D. melanogaster* emergieron solo de los frutos con...
madurez avanzada, por lo que estas dos últimas especies se consideran secundarias u oportunistas.

Fig. 1. Drosophilidae asociados con frutos de higo. Zaprionus indianus, hembra (A) y macho (B); Drosophila suzukii hembra (C) y macho (D); Drosophila melanogaster hembra (E) y macho (F).

Las hembras de Z. indianus ovipositan en el margen del ostiolo, donde posteriormente los huevos eclosionan y penetran al interior del fruto. Se observó que las moscas entran y salen constantemente por esta abertura natural del higo, lo que sugiere que esta actividad la realizan con fines de alimentación y refugio. De acuerdo con nuestras observaciones, Z. indianus representa una plaga importante en las plantaciones de higo de la zona debido a los daños causados en los frutos y a los posibles problemas de comercialización que se originan por su presencia. D. suzukii y D. melanogaster en cambio, se detectaron como insectos oportunistas, probablemente atraídos por los volátiles liberados por los frutos sobremaduros, aprovechando el libre acceso por el ostiolo y los daños en la epidermis.
Posteriormente, con la finalidad de desarrollar un sistema de trampeo para Z. indianus se realizó una investigación en un invernadero con producción de higo variedad Nezahualcóyotl, ubicada en el estado de Morelos, México.

Mediante el uso de trampas transparentes de 1 L de capacidad, se estudió la respuesta de Z. *indianus* a jugo de piña comercial, vinagre de manzana, jugo de higo natural, vino blanco y agua potable sola como testigo. Cada tratamiento tuvo cuatro repeticiones. La evaluación se realizó del 9 de noviembre al 21 de diciembre de 2016. Del 10 de febrero al 24 de marzo de 2017 se evaluaron cuatro diseños de trampas elaboradas de materiales económicos (Figura 2) y cebadas con 200 ml del mejor atrayente obtenido del experimento previo.

El jugo de piña fue el tratamiento que atrajo significativamente más adultos de Z. *indianus*, seguido por el vinagre de manzana, el jugo de higo y el vino blanco respectivamente. No se obtuvieron diferencias significativas de captura entre los diseños de trampas evaluados. Con nuestros resultados podemos proponer un sistema de trampeo fácil y económico que puede ser utilizado para detectar y monitorear a esta plaga.

Figura 2.- Tipos de trampas evaluadas.
Nuestros resultados mostraron que el mejor tratamiento para la atracción de \textit{Z. indianus} fue el jugo de piña comercial. Varios autores mencionan que la combinación de vinagre más vino ejercen una alta atracción de adultos del drosofilido en comparación con los con los tratamientos por separado, sin embargo en este experimento no realizamos mezclas de atrayentes. Estudios posteriores mediante mezclas serán necesarios para conocer si la piña o las mezclas de vino más vinagre son mejores atrayentes.

Entre los diseños de trampas evaluados obtuvimos resultados sin diferencias estadísticas entre los tratamientos, por lo que se sugiere que \textit{Z. indianus} no tienen ningún problema con el acceso al interior de la trampa. Sin embargo detectamos que entre más amplió esté la entrada del recipiente, habrá un mayor número de insectos no objetivo capturados.

EVALUACIÓN DE CEBOS Y TRAMPAS PARA SU USO EN EL MONITOREO Y CONTROL DE \textit{Drosophila suzukii} (DIPTERA: DROSOPHILIDAE) EN MÉXICO.

Rodrigo Lasa-Covarrubias1, Ricardo Toledo-Hernández2, y Trevor Williams1

1Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología AC. Xalapa, Veracruz, México.

2Departamento de Investigación Aplicada Driscoll’s, Zapopan, Jalisco, México.

*Autor de correspondencia: correo rodrilasa@gmail.com

La reciente invasión de \textit{Drosophila suzukii} (Matsumura) (Diptera: Drosophilidae) en Norte América está ocasionando, al igual que en Europa, pérdidas millonarias en diversos cultivos agrícolas, principalmente frutos suaves (Goodhue \textit{et al.}, 2011). Esta mosca es una de las pocas especies de drosófila que tienen un ovipositor aserrado que le permite rajar la superficie de los frutos sanos y depositar los huevos en el interior, comprometiendo la producción y calidad de la fruta. Algunos factores como su rápido ciclo de desarrollo, alta fecundidad y gran diversidad de hospederos (silvestres y cultivados) están favoreciendo la expansión y dificultando las
estrategias de control. El monitoreo y detección de la especie es una estrategia clave dentro de los programas de manejo integrado de esta plaga. Actualmente, los atrayentes y cebos utilizados para el monitoreo de *D. suzukii* están basados en estímulos alimenticios. La fácil disposición, bajo precio, durabilidad y facilidad para contabilizar las moscas capturadas hace que el vinagre de manzana sea uno de los productos más utilizados. No obstante, la eficacia de captura del vinagre de manzana está por debajo de otros productos de fermentación que utilizan levaduras (Iglesias *et al.*, 2014; Burrack *et al.*, 2015). La asociación simbiótica entre *D. suzukii* y las levaduras hace que la fermentación de este tipo de productos tenga mucha más efectividad que los vinagres (Hamby y Becher, 2016). Los sistemas actuales de detección están actualmente por debajo del nivel óptimo y deben ser mejorados en eficiencia y selectividad para el monitoreo y desarrollo de otras estrategias de control como el trampeo masivo y el uso de estaciones cebo. Con base en estas necesidades se presentan avances para la mejora de trampas y cebos para su uso en el monitoreo y control de esta especie en México.

Los ensayos realizados en este trabajo contemplan ensayos de laboratorio y campo. Los ensayos de laboratorio fueron realizados en jaulas de dos tamaños (1x0.6x0.6 m y 0.3x0.3x0.3m) utilizando una metodología en la que los tratamientos son comparados de manera simultánea en varias jaulas y durante varias repeticiones en las cuales los dispositivos son rotados de manera sistemática para reducir el efecto de la posición. Un determinado número de moscas son liberadas al interior de la jaula y las capturas de cada dispositivo fueron contabilizadas 24 horas después. En este tipo de ensayos se compararon diferentes tipos de vinagres (manzana, vino, arroz, caña), diferentes marcas comerciales de vinagres de manzana y otros productos comerciales suministrados en México como vinagres “sabor manzana”. Igualmente con esta metodología se evaluó la efectividad de vinagre de manzana mediante la adición al vinagre de manzana de diferentes compuestos como saborizantes artificiales de frutas (Saborex de México SA de CV, México) o aminoácidos provenientes de distintas proteínas hidrolizadas comerciales en México (Captor, Flyral, Winner y CeraTrap). También se evaluaron diluciones del vinagre de manzana o la inclusión de ácido acético adicional. En ensayos también
de laboratorio se evaluó la atracción de varios modelos de trampas tipo vaso con distintos estímulos visuales, el uso de tapas semiesféricas o planas y el efecto de la combinación de vinagre de manzana con una mezcla de levaduras en dispositivos complementarios dentro de la misma trampa.

La mejor combinación de trampa y cebo fue posteriormente evaluada en condiciones de campo en cultivos de guayaba y zarzamora en los estados de Veracruz y Michoacán. La evaluación se realizó en huertos comerciales mediante una disposición del bloque al azar evaluando las trampas cada 7 días y rotando estás dentro de las distintas posiciones del bloque. Este modelo de trampa mejorada fue posteriormente comparada con otras trampas y cebos comerciales utilizadas en México como la trampa Pherocon™ SWD (Trécé, Inc., USA) o el cebo SuzukiTrap (Bioibérica, España).

Los resultados obtenidos en pruebas de laboratorio demuestran que los niveles de captura de *D. suzukii* son significativamente diferentes entre los distintos tipos de vinagre utilizado, siendo el vinagre de manzana y vinagre de vino los más efectivos. Por el contrario, no se observaron diferencias significativas entre las distintas marcas comerciales de vinagre de manzana, mientras que los vinagres suministrados como vinagre “sabor manzana”, constituidos por una mezcla de vinagre de caña y saborizante, fueron significativamente menos efectivos que el vinagre de manzana utilizado como control. La inclusión de saborizantes comerciales de frambuesa, mora, fresa y manzana al 0.1% (vol./vol.) no mejoraron significativamente los niveles de captura del vinagre de manzana. Igualmente, la inclusión al vinagre de manzana de un 8% de las proteínas hidrolizadas tampoco mejoró significativamente las capturas de *D. suzukii* en ensayos de laboratorio.

Entre varios modelos de trampa evaluados con distintos estímulos visuales, los modelos rojos con una cinta horizontal de color negro, similares a los desarrollados por Carroll (2016), fueron los que mejor nivel de captura obtuvieron. Cuando estas trampas utilizaban un modelo de tapa semiesférica, además mejoraban significativamente el nivel de retención de las moscas capturadas mejorando su eficiencia. Con base en este modelo se desarrolló una trampa que podía ser
utilizada con dos cebos complementarios e independientes. Se determinó que una mezcla de vinagre de manzana con 10% de etanol como método de retención y la inclusión de un dispositivo adicional con levadura y sacarosa en la misma trampa mejoró significativamente los niveles de captura con respecto al vinagre de manzana solo, una suspensión de levadura y sacarosa o el uso de una mezcla de levadura y sacarosa con vinagre de manzana. La acción sinérgica de la mezcla de levaduras activas con los volátiles del vinagre de manzana y etanol, hizo que esta mezcla fuera también significativamente más efectiva en la captura de D. suzukii en condiciones de campo (guayaba y zarzamora) que el vinagre de manzana convencional, una mezcla de levaduras con azúcar y harina o los productos comerciales SuzukiiTrap y la trampa Phercon™. El modelo de trampa desarrollado en este trabajo es sencillo, muy económico y ha resultado ser significativamente más efectivo que los productos comerciales utilizados en la actualidad en México. Estudios futuros deben poner de manifiesto su alta eficacia de captura en otros cultivos y su posible uso en el desarrollo de estrategias complementarias de control de esta especie como son el trampeo masivo y las estaciones cebo.

Literatura Citada

CONTROL DEL GUSANO MEDIDOR DEL AGUACATE *Caripeta* sp (LEPIDOPTERA: GEOMETRIDAE) CON INSECTICIDAS BIORRACIONALES.

Braulio Alberto Lemus-Soriano¹, Saúl Pardo-Melgarejo², y Jaime Luciano Garza Blanc³.

³Phytonutrimientos

Autor de correspondencia: correo lemus9@yahoo.com.mx

La producción de aguacate mexicano representa más del 30% de la cosecha mundial, destacando el estado de Michoacán como el mayor productor, aportando cuatro quintas partes del total nacional (Secretaría de Economía, 2016). En el año 2017, la producción de aguacate en nuestro país alcanzó 1,997,629 toneladas (El Universal, 2018) Las larvas de lepidópteros causan daños al alimentarse de las hojas, sin embargo, el daño puede extenderse a los frutos alimentándose superficialmente, cuando estos están contiguos, también se alimentan de panículas florales y frutos ya cuajados, esto le causa al productor pérdidas en la producción (Coria-Avalos, 1993; Coria-Ávalos *et al.*, 2007). Durante los últimos años el control
de larvas de lepidópteros en especial del gusano medidor se ha realizado por medio del control químico, esto incrementa los costos de producción, también afectando el medio ambiente y a la salud humana ya que estos tienen más residualidad al ser aplicados. Además, al ser el aguacate un producto de exportación, la restricción de moléculas químico-sintéticas obliga al productor a buscar nuevas alternativas para su manejo.

El experimento se realizó en la huerta llamada “El Pino”, ubicada en el municipio de Uruapan, Michoacán. Se encuentra ubicada a 1556 msnm, en las coordenadas 19°21´01.67” de Latitud Norte y los meridianos 102°04´07.42” de longitud Oeste. Se utilizó un diseño experimental de bloques completos al azar con seis tratamientos y cuatro repeticiones. La unidad experimental fue de un árbol de aguacate var. Hass de 9 años. Los insecticidas utilizados en los tratamientos fueron BioPiretrin® (extracto de neem, canela y orégano), BioPlague® Extra (*Streptomyces griseus* y *Micronospora endolithica*) y BioPiretrin® Plus (extracto de neem, canela, orégano, ajo, higuerilla y aceite de girasol), así como un tratamiento químico de referencia donde se utilizaron los insecticidas Intrepid® (metoxifenozide) y Anatrina® (permetrina) y un testigo absoluto sin aplicación. Las dosis utilizadas fueron considerando un volumen de agua por ha de 1000 L. En el caso del testigo químico de referencia primero se utilizó Intrepid® a dosis de 0.25 L y en la segunda aplicación Anatrina® a dosis de 0.5 L. La variable respuesta fue el número de larvas por brote vegetativo, tomando ocho brotes por unidad experimental. Se realizaron dos aplicaciones a intervalos de 21 días y observaciones a los 7, 14 y 21 días después de cada aplicación, para esto se utilizó una aspersora motorizada de mochila Hyundai® previamente calibrada. Con los datos obtenidos se realizó un análisis de varianza y pruebas de separación de Tukey (SAS/STAT, versión 9.0; SAS Institute, Cary, NC), además se utilizó la fórmula de Abbott (1925) para el cálculo de la efectividad biológica.

En la primera aplicación a los 7 días después no hubo diferencias significativas (P>0.05) entre los tratamientos; sin embargo, a los 14 días el testigo químico Intrepid® presentó el menor número de larvas, aunque para los 21 días los insecticidas biorracionales se comportaron estadísticamente iguales al testigo
químico con ≤ 2 larvas por brote. Para la segunda aplicación el testigo absoluto siguió con un aumento en el número de larvas por brote en comparación con los tratamientos químico y de insecticidas biorracionales que mantuvieron las poblaciones bajas. En cuanto a la efectividad biológica, la mezcla BioPiretrin® + BioPlague® extra obtuvo el mayor porcentaje durante el experimento, superando al tratamiento químico convencional.

El uso de insumos biorracionales en la agricultura y en el control de insectos se ha incrementado debido a su bajo impacto ambiental y en algunos casos, estos productos constituyen la principal herramienta de control de plagas (Adegboye y Babalola, 2013; García-Gutiérrez y Tamez-Guerra, 2012). Sus múltiples mecanismos de acción debido a los metabolitos secundarios los han convertido en una opción de control sobre varias especies de insectos, incluidas las larvas de lepidópteros (D’Incao et al. 2013). Lo anterior se ve de manifiesto en los resultados obtenidos, donde los tratamientos con este tipo de insecticidas logran superar el nivel de control respecto al testigo químico convencional, por lo que se convierten en una opción para el control de larvas en aguacate. Este ensayo es el primer reporte de control sobre esta plaga, la cual no se encontraba citada previamente en la literatura.

Literatura Citada

USO DE INSECTICIDAS BOTÁNICOS PARA EL CONTROL DE TRIPS EN AGUACATE.

Braulio Alberto Lemus-Soriano¹, Saúl Pardo-Melgarejo², y Jaime Luciano Garza-Blanc³.

³Phytonutrimentos

*Autor de correspondencia: correo lemus9@yahoo.com.mx

El cultivo del aguacate representa uno de los productos agrícolas de mayor valor comercial en México y principalmente en el estado de Michoacán. Generando ganancias que no solo benefician al productor, sino a la sociedad en general, debido a las fuentes de empleo directos e indirectos que genera. Sin embargo, una de sus principales limitantes es la presencia de plagas, y la que más destaca son los trips (Castañeda et al., 2011), que se presentan con mayor intensidad desde la etapa de floración y hasta la fructificación donde sus daños demeritan la calidad del fruto repercutiendo directamente en el precio del producto (Coria, 2009). El método de control más utilizado en la región para el control de trips es el químico; sin embargo, actualmente se han restringido varios insecticidas sobre todo en el mercado de exportación, ya que la demanda actual va encaminada a adquirir alimentos con mínimos residuos de plaguicidas lo cual disminuye riesgos contra la salud humana, por tal motivo es necesario la evaluación de nuevas moléculas como es el caso de los insecticidas botánicos.

Se realizó un experimento en un huerto de aguacate cv. Hass, en el municipio de Tancítaro, Michoacán (19° 19’ 27.7” N, 102° 24’ 56.8” W y 1946 m de altitud). En este estudio se utilizaron cinco insecticidas comerciales de origen botánico: BioCapsi® (extracto de chile, ajo y canela), BioCapsi® Extra (extracto de chile ajo,
canela e higuerilla) NeemCanela® (extracto de neem y canela), NeemHiguer® (extracto de neem e higuerilla) y BioPiretrin® Plus (extracto de neem, canela, orégano, ajo, higuerilla y aceite de girasol) solos y en mezcla, además de un insecticida sintético a base de lambda cyalotrina.

En el experimento se utilizó un diseño experimental en bloques al azar. Se tuvieron cinco repeticiones por cada tratamiento. Un árbol de aguacate (= unidad experimental) se consideró como una repetición. Antes de la aplicación de los insecticidas se realizó un muestreo preliminar para conocer la densidad poblacional del complejo de trips (larvas y adultos). Los árboles de aguacate, de entre 8 a 9 años con una altura aproximada entre 2 a 3 m y en etapa de floración, se trataron hasta punto de goteo. Los insecticidas se mezclaron en una solución de agua con pH de 6.5, más un surfactante organosiliconado. La aplicación de los insecticidas se realizó cada 21 días (en total dos), entre las 7:00 y las 9:00 h, con una aspersora motorizada de mochila, con boquilla tipo pistola. Se realizaron muestreos a los 7, 14 y 21 días después de cada aplicación. En cada unidad experimental, se revisaron ocho inflorescencias; cuatro del estrato bajo y cuatro del estrato medio, de cada uno de los cuatro puntos cardinales. Con los datos obtenidos se realizó un análisis de varianza y pruebas de separación de Tukey (SAS/STAT, versión 9.0; SAS Institute, Cary, NC), además se utilizó la fórmula de Abbott (1925) para el calcular de la efectividad biológica.

En la primera aplicación, no se presentaron diferencias significativas entre los tratamientos a los 7 y 14 d después de la aplicación. Sin embargo, a los 21 d se observaron diferencias significativas, siendo el testigo sin aplicación el que presentó el mayor número de trips por inflorescencia (> 7); mientras que el resto de los tratamientos, incluido el tratamiento químico sintético, presentaron una población < 2 trips por inflorescencia. Cabe destacar que a partir de los 21 después de la primera aplicación y hasta la última toma de datos, no hubo diferencias estadísticas entre los tratamientos insecticidas botánicos y químicos. En la segunda aplicación, en el testigo se siguió incrementando la población de trips de una manera exponencial y en todas las fechas de muestreo subsecuentes. En los tratamientos con el insecticida químico y los insecticidas botánicos, el número de trips por inflorescencia
disminuyó, obteniendo ≤ 1 a los 21 días. En cuanto a la efectividad biológica, hasta la última fecha de muestreo, el insecticida a base de lambda cyalotrina y la mezcla de BioCapsi® + NeemCanela® presentaron los niveles más altos de efectividad biológica (97%); seguidos de los insecticidas botánicos BioPiretrin® Plus y NeemHiguer® + NeemCanela® con una efectividad de 93 y 91% respectivamente. El empleo de plaguicidas de origen botánico se remonta hasta antes de la aparición de los plaguicidas sintéticos, y en la actualidad representan una herramienta básica para el control de plagas (Pérez, 2012). Además, estos productos presentan múltiples mecanismos de acción según su efecto en el comportamiento de los insectos: a) repelentes, los cuales alejan a los insectos de la planta; b) supresores, que inhiben la iniciación de la alimentación o la oviposición del insecto en el hospedante; c) disuasivos, que interrumpen la continuación de la alimentación o la oviposición del insecto (Rattan, 2010; Pino et al., 2013). Lo anterior sugiere que los múltiples mecanismos de acción de los insecticidas utilizados en este estudio pudieron presentar un efecto conjunto e impactar de forma más contundente sobre el complejo de trips, motivo por el cual se presentaron porcentajes altos de eficacia biológica. El uso de insecticidas botánicos representa una opción dentro del manejo integrado de trips en el aguacate, además que son menos agresivos con el medio ambiente y la salud humana.

Literatura Citada

Las abejas están expuestos a una variedad cada vez mayor de xenobióticos (compuestos extraños), tanto de fuentes naturales como sintéticos. La agricultura moderna a menudo implica el uso de plaguicidas para proteger los cultivos de los insectos plaga. Sin embargo, estos también pueden dañar a insectos benéficos tales como los polinizadores. Al respecto, la abeja *A. mellifera*, es muy importante desde el punto de vista agrícola; contribuyendo activamente a la polinización de las plantas, lo que hace posible la producción de alimentos (Medrzycki *et al.*, 2013). La importancia de la interacción entre las abejas y los insecticidas no ha disminuido a pesar del continuo descubrimiento de nuevos ingredientes activos y nuevos modos de acción que pueden ser utilizados para controlar plagas de insectos (Johnson, 2015). Debido a esto se realizó el presente trabajo con el objetivo de evaluar diferentes insecticidas: flupyradifurone, spirotetramat, espinetoram, ciantraniliprol, imidacloprid y azadiractina sobre la abeja *A. mellifera*.

Para cada insecticida se evaluó la concentración mínima recomendada en campo (CMinRC), concentración media recomendada en campo (CMedRC) y concentración máxima recomendada en campo (CMáxRC). Por cada concentración e insecticida se realizaron cinco repeticiones, cada una con 10 adultos de abejas en
cajas Petri. La mortalidad de los adultos se registró a las 4, 12, 24, 48, 72 y 96 h post-tratamiento.

Los resultados de mortalidad se sometieron a un análisis de varianza y prueba de separación de medias LSD, además los efectos se clasificaron de acuerdo con la escala de toxicidad propuesta por la Organización Internacional de Lucha Biológica (OILB) para diversos organismos benéficos (Hassan, 1992). Esta escala consta de cuatro categorías, según el porcentaje de mortalidad causado: 1 = inofensivo (<30%), 2 = ligeramente tóxico (30-79%), 3 = moderadamente tóxico (80-99%) y 4 = altamente tóxico (>99%).

En el tratamiento por ingestión a las 4 h post-tratamiento, las tres concentraciones ensayadas de imidacloprid causaron 100% de mortalidad, mientras que en el resto de los insecticidas fue ≤6%. A las 12 h la mortalidad aumentó a 16% en la concentración máxima de espinetoram, mientras que en las otras dos concentraciones de este insecticida y los insecticidas ciantraniliprol, flupyradifurone, spirotetramat y azadiractina continuaron con una mortalidad ≤6%. A partir de las 24 h, las tres concentraciones ensayadas de espinetoram causaron más de 60% de mortalidad, mientras que a las 48 h fue 100%. La mortalidad acumulada causada por azadiractina, flupyradifurone, ciantraniliprol y spirotetramat fue ≤26% a las 72 y hasta las 96 h. De acuerdo con la escala toxicológica de la OILB, los insecticidas imidacloprid y espinetoram, en sus tres concentraciones ensayadas, fueron altamente tóxicos, mientras que ciantraniliprol, flupyradifurone, spirotetramat y azadiractina fueron los de menor impacto.

En el ensayo tópico a las 4 h todos los insecticidas causaron baja mortalidad (≤8%), con excepción de las concentraciones media (34%) y máxima (38%) de flupyradifurone y la concentración máxima de espinetoram (24%). De las 12 a las 96 h las concentraciones media y máxima de flupyradifurone presentaron una mortalidad ≤88% y en imidacloprid fue de 96%; mientras que las concentraciones media y alta de espinetoram alcanzaron el 100% de mortalidad a partir de las 24 h y su concentración mínima alcanzó el 100% hasta las 72 h. Ciantraniliprol, spirotetramat y la concentración mínima de flupyradifurone presentaron similitud entre el 34 y 46% de mortalidad, mientras que en azadiractina fue ≤6. En base en
la escala de la OILB, las tres concentraciones de espinetoram resultaron altamente tóxicas, mientras que imidaclorpid fue de toxicidad moderada, ciantraniliprol en su concentración media resultó inofensivo y para las concentraciones baja y alta ligeramente tóxico. Flupyradifurone en las concentraciones mínima y media fue ligeramente tóxico y en la concentración máxima moderadamente tóxico, spirotetramat ligeramente tóxico y azadiractina fue inofensivo hacia las abejas. Estos resultados podrían ser considerados antes de diseñar un programa de MIP, en donde se pretenda no sólo controlar alguna plaga, sino también garantizar una adecuada polinización y producción de los cultivos.

Literatura Citada

Medrzycki, P; Giffard, H; Aupinel, P; Belzunces, L P; Chauzat, M-P; Claßen, C; Colin, M E; Dupont, T; Girolami, V; Johnson, R; Leconte, Y; Lückmann, J; Marzaro, M; Pistorius, J; Porrini, C; Schur, A; Sgolastra, F; Simon Delso, N; Van der steen, J J M; Wallner, K; Alaux, C; Biron, D G; Blot, N; Bogo, G; Brunet, J-L; Delbac, F; Diogon, M; EL Alaoui, H; Provost, B; Tosi, S. and C. Vidau. 2013. Standard methods for toxicology research in *Apis mellifera*. In: Dietemann, D., J. D. Ellis and P. Neumann (Eds) The COLOSS BEEBOOK, Volume I: standard methods for *Apis mellifera* research. *Journal of Apicultural Research*, 52(4): http://dx.doi.org/10.3896/IBRA.1.52.4.14 (Fecha de consulta: 21-VIII-2016).

EFECTO OVICIDA DE SPIROTRETAMAT Y FLUPYRADIFURONE EN *Bactericera cockerelli* Sulc (HEMIPTERA: TRIOZIDAE).

Juan Mayo-Hernández¹, Jose Molina-Padilla¹, Jorge Corrales-Reynaga¹*, Oswaldo García-Martínez¹, y Juan Carlos Terrazas-Portillo²
El psílido de la papa, *Bactericera cockerelli* Sulc (Hemiptera: Tiozidae) es una plaga importante en los cultivos de papa (*Solanum tuberosum* L.), tomate (*Lycopersicum esculentum* L.) y chile (*Capsicum* spp) (Vega *et al*., 2008). Su importancia radica en que ocasiona daños directos a la planta al succionar savia (Munyaneza *et al*., 2007) y daños indirectos al ser vector de fitoplasmas (Garzón *et al*., 2004) y “*Candidatus Liberibacter solanacearum*” (Hansen *et al*., 2008). Las pérdidas causadas por fitoplasmas y “*Candidatus Liberibacter solanacearum*” son millonarias (Secor y Rivera-Varas, 2004) así mismo causan el abandono de campos de siembra por la merma en producción y calidad del cultivo (Flores *et al*., 2004). El control de *B. cockerelli* se basa principalmente en el uso de insecticidas químicos, dirigidos a los diferentes estadios ninfales y a adultos. Los productores de papa principalmente de algunas regiones de México realizan hasta 30 aplicaciones de insecticidas durante el ciclo del cultivo, esto incrementa los costos de producción y representa un riesgo de contaminación ambiental, daño directo al hombre y surgimiento de resistencia a insecticidas por el uso indiscriminado de los mismos.

Se han realizado muchas investigaciones para el control de *B. cockerelli*. Pero indiscutiblemente el uso de ingredientes activos químicos se debe de usar para prevención y protección del cultivo ya que muchas de las veces es necesario para evitar pérdidas numerosas al momento de la cosecha.

Por lo antes mencionado, el objetivo de este trabajo fue evaluar los insecticidas spirotetramat y flupyradifurone a diferentes concentraciones para el control químico de huevecillos de *B. cockerelli* en plantas de papa, bajo condiciones de laboratorio. Estos insecticidas son recomendados para el control de inmaduros en *B. cockerelli* y no se sabe sobre el efecto ovicida, lo que de ser efectivo sería otra ventaja competitiva de los productos.
El trabajo se realizó bajo condiciones de laboratorio en el Departamento de Parasitología, de la Universidad Autónoma Agraria Antonio Narro (UAAAN). Para la realización del bioensayo, se colocaron plantas de papa variedad Ágata dentro de una jaula para que adultos de *B. cockerelli* ovipositaran sobre las mismas, por un periodo de tres días, después de este tiempo las plantas fueron retiradas de la colonia y los adultos retirados con succionadores. Se cortaron hojas de las plantas infestadas para realizar el conteo de huevecillos que había en ellas bajo un microscopio estereoscópico; las hojas que tenían más de 10 huevecillos fueron utilizadas en el experimento. Realizado el conteo, se procedió a preparar las diferentes concentraciones de los productos insecticidas Spirotetramat (Movento®) y flupyradifurone (Sivanto®) que serían utilizadas en el bioensayo. Se realizaron tres concentraciones de spirotetramat (1.0 mL/L, 1.5 mL/L, 2.0 mL/L) y tres concentraciones de flupyradifurone (2.5 mL/L, 3.75 mL/L, 5.0 mL/L), concentración baja, concentración media y concentración alta de ambos productos. Cada concentración se tomó como un tratamiento, teniendo al final un total de 6 tratamientos más un testigo, cada tratamiento constó de cuatro repeticiones y cada repetición con diferente número de huevecillos de *B. cockerelli* superior a 10. Posteriormente las hojas con su respectivo número de huevecillos fueron sumergidas en las concentraciones correspondientes, por un periodo de 5 segundos, se esperó a que cayera el excedente de la solución de insecticida por sí mismo. Para el caso del testigo la hoja fue sumergida en agua. Las hojas humedecidas en la solución insecticida fueron puestas en cajas de plástico, las cuales contenían una sanita húmeda y algodón con agua. Una vez dentro de la caja, el algodón se colocó en el peciolo de la hoja para proporcionarle hidratación. La toma de datos se realizó a 1, 3, 5 y 7 días después de la aplicación de los tratamientos. Evaluando las variables: huevecillos viables y huevecillos no viables. Para huevecillos viables y no viables se tomó el criterio de evaluación de color, forma y turgencia de los mismos. La evaluación fue para cada uno de los huevecillos utilizados en el bioensayo. Los datos obtenidos fueron analizados con el programa estadístico SAS (2002) utilizando un diseño completamente al azar y comparación entre medias con una prueba de Tukey con una significancia de 0.05 (*P*=0.05).
Los resultados del presente estudio muestran que el efecto de los diferentes tratamientos se observó de una manera más visible a partir del día cinco de evaluación. No obstante Spirotetramat a las 24 h de haber iniciado el bioensayo ya mostraba sus primeros efectos en los huevecillos, con decaimiento del pedicelo. Conforme fueron pasando los días de evaluación los huevecillos mostraron decoloración, pérdida de forma y turgencia, dando una apariencia aguanosa. Spirotetramat a una concentración de 1.0 a 2.0 mL/L mostró un efecto ovicida de 16 al 30% sobre huevecillos de *B. cockerelli* al quinto y séptimo día de evaluación. Los huevecillos tratados con flupyradifurone mostraron un necrosamiento, decoloración, pérdida de forma y turgencia igual que Spirotetramat. La concentración de 2.5 a 5.0 mL/L de flupyradifurone mostró un efecto ovicida de 21 al 57% en huevecillos de *B. cockerelli* al día cinco y siete de evaluación. Cabe destacar que el testigo no registró huevecillos con daño, todos se mantuvieron turgentes, pedicelo erecto y coloración normal (color crema a amarillo) durante los días de evaluación, al no haber sido tratado con insecticida.

Con el presente trabajo queda demostrado que los ingredientes activos spirotetramat y flupyradifurone tienen efecto ovicida sobre huevecillos de *B. cockerelli* en concentraciones de 1.0 – 2.0 mL/L y 2.5 – 5.0 mL/L respectivamente.

Literatura citada

tomato and potato is vectored by the psyllid *Bactericera cockerelli* (Sulc). Applied and Environmental Microbiology 74:5862-5865.

En el estado de Oaxaca, diferentes especies del género Agave son utilizados como materia prima para la elaboración del mezcal. En Agave karwinskii Zucc., la piña, representa el 45% del total de la planta, mientras que las hojas corresponden al restante 55%. Las hojas, son abandonadas después de la cosecha a cielo abierto, contaminando el ambiente debido a la forma inapropiada a que son expuestas para su degradación y al mismo tiempo sirven de hospederos de otras plagas y enfermedades (Bautista y Smit, 2012).

Culex quinquefasciatus Say., es considerado una de las plagas importantes en salud pública, por ser vector de la filariasis linfática, virus del Nilo Occidental, encefalitis japonesa, entre otras. De forma tradicional, el control del mosquito se ha basado en el uso de productos químicos sintéticos que han provocado resistencia, eliminación de enemigos naturales, toxicidad en mamíferos, peces, aves, organismos benéficos y la contaminación del agua, aire, suelo (Govindarajan y Sivakumar 2014).
Ante la necesidad de buscar alternativas viables para el control de este culícidos, el trabajo tuvo como objetivo evaluar la toxicidad de extractos de hojas de *A. karwinskii* sobre larvas de segundo instar de *Cx. quinquefasciatus*.

Cría y cuidados de mosquitos. Las balsas de huevos de *Cx. quinquefasciatus* se recolectaron en depósitos de agua del cementerio municipal de Ocotlán de Morelos; Oaxaca, México; las balsas se colocaron individualmente en bandejas de plástico que contenían 300 mL de agua destilada para promover la eclosión y el desarrollo de las fases inmaduras del mosquito. Las pupas formadas se transfirieron a recipientes de plástico y se introdujeron a jaulas entomológicas de 60 x 60 x 60 cm para la emergencia de adultos. Los adultos fueron provistos con una solución azucarada al 10% y semanalmente se introdujo una gallina inmovilizada como material hematofágico para las hembras. La cría se mantuvo a 27±2 °C, 60 – 70% de humedad relativa y fotoperiodo de 12 h luz y 12 h oscuridad (Pérez-Pacheco et al., 2004).

Material vegetal y preparación de extractos crudos. Las hojas frescas de *A. karwinskii* se recolectaron en el municipio de Santa Ana Zegache, Oaxaca, México; las hojas se lavaron con agua de grifo y se colocaron sobre papel periódico en sombra para su secado. Las hojas secas se pulverizaron con un molino mecánico. En un matraz, se agregaron 100 g de material vegetal pulverizado con 300 mL de cada uno de los disolventes y se dejó reposar por 72 h. Se separó el sólido del líquido utilizando papel filtro Whatman No. 1 y el remanente se descartó. Los disolventes se eliminaron en un rotavapor BÜCHI® a presión reducida en baño de agua a 45 °C (Granados-Echegoyen et al., 2015).

Concentraciones de aplicación. Para el extracto de etanol, se tomó 1.25 mL de cada uno de los extractos crudos y se diluyó en 10 mL de agua destilada para obtener la concentración de 1,250 ppm y por dilución volumétrica en serie se prepararon las concentraciones de 625, 312, 156 y 78 ppm. Para los extractos de metanol y hexano se utilizaron concentraciones de 2,000, 1,000, 500, 250 y 125 ppm. Las concentraciones finales a las que fueron sometidas las larvas del mosquito, se obtuvieron aplicando 1 mL de cada concentración en la unidad experimental, siendo
las concentraciones finales de 125, 62.5, 31.2, 15.6 y 7.8 ppm para el extracto de etanol y 200, 100, 50, 25 y 12.5 para los extractos de metano y hexano. (Granados-Echegoyen et al. 2015).

Bioensayos de acción larvícida. El efecto tóxico sobre larvas de segundo instar de Cx. quinquefasciatus se determinó 24 h post aplicación de los tratamientos (Rawani et al., 2009). Para el establecimiento del bioensayo se seleccionaron grupos de 20 larvas que fueron colocadas en un vaso de plástico con 100 mL de agua destilada y 1 mL de los tratamientos. Se utilizó un diseño experimental completamente aleatorizado con cuatro repeticiones. Se realizó un análisis de varianza y comparación de medias con el programa SAS 9.0.

Se logró observar que 24 h post aplicación de los tratamientos, el extracto de etanol tuvo un efecto de 92.50% a una concentración de 125 ppm, mientras que en las concentraciones más altas de extractos de metanol y hexano se obtuvieron valores de 22.50 y 25% de efectividad, respectivamente. Todos los tratamientos presentaron una reducción proporcional del efecto tóxico en las concentraciones empleadas.

Cuadro 1. Efecto tóxico sobre de larvas de segundo instar de Cx. quinquefasciatus tratadas con extractos de hojas secas de A. karwinskii.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Concentración (ppm)</th>
<th>N° Larvas (4 rep.)</th>
<th>Mortalidad (%) / horas 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanol</td>
<td>125</td>
<td>80</td>
<td>92.50 a</td>
</tr>
<tr>
<td></td>
<td>62.5</td>
<td>80</td>
<td>48.75 b</td>
</tr>
<tr>
<td></td>
<td>31.2</td>
<td>80</td>
<td>37.50 c</td>
</tr>
<tr>
<td></td>
<td>15.6</td>
<td>80</td>
<td>0.00 d</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>80</td>
<td>0.00 d</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>80</td>
<td>0.00 d</td>
</tr>
<tr>
<td>Metanol</td>
<td>200</td>
<td>80</td>
<td>22.50 a</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>80</td>
<td>10.00 b</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>80</td>
<td>6.25 b</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>80</td>
<td>3.75 b</td>
</tr>
<tr>
<td></td>
<td>12.5</td>
<td>80</td>
<td>2.50 b</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>80</td>
<td>0.00 b</td>
</tr>
<tr>
<td>Hexano</td>
<td>200</td>
<td>80</td>
<td>25.00 a</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>80</td>
<td>6.25 b</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>80</td>
<td>5.00 b</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>80</td>
<td>1.25 b</td>
</tr>
</tbody>
</table>
Los resultados obtenidos del efecto tóxico sobre larvas tratadas con extractos de hojas de A. karwinskii en las concentraciones más altas, son similares a los que obtuvieron Iannacone et al., (2013) en el que evaluaron el efecto tóxico de extracto acuoso de Agave americana sobre larvas de tercer instar de Cx. quinquefasciatus, demostrando que a las 24, 48, 72, 96 y 144 h a una concentración de 300 ppm se obtuvo entre 30 y 45% de efecto tóxico. Banerjee et al., (2011) evaluaron seis extractos de Limonia acidissima sobre larvas de mosquito, resultando ser efectivos a una concentración de 3% a las 24, 48 y 72 horas después de la exposición.

El extracto de etanol obtenido de hojas de A. karwinskii es una alternativa viable de control para mosquitos, permitiendo un control mayor al 90% de la población de larvas durante las primeras 24 h a una concentración de 125 ppm y superiores, evitando el desarrollo de vectores de enfermedades de importancia epidemiológica.

Literatura Citada

María Guadalupe Ramírez González¹, Alex Córdoba Aguilar¹* y A. Laura Flores Villegas²

¹Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, C.P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, CDMX, México.

²Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, 04510, Coyoacán, CDMX, México.

*Autor de correspondencia: correo acordoba@ieologia.unam.mx

La interacción parásito-hospedero es una carrera armamentista (Rico, 2011; Rodríguez *et al.*, 2014). Por el lado de los parásitos, se ha demostrado que estos manipulan la conducta alimenticia de sus vectores invertebrados, lo que resulta en un aumento de probabilidad de transmisión del parásito a otro hospedero (Botto *et al.*, 2006). Un ejemplo de manipulación es el de los acantocéfalos, donde se ha encontrado que los primeros hacen a sus hospederos intermedios más fáciles de ser depredados lo cual facilita la transmisión de los parásitos a los hospederos definitivos (Poulin, 1995).

La tripanosomiasis americana, mejor conocida como enfermedad de Chagas es transmitida por vectores pertenecientes a la subfamilia Triatominae y es causada por el parásito *Trypanosoma cruzi* (Trypanosomatida: Trypanosomatidae). La transmisión de éste ocurre por contacto con las heces de los triatominos, Los triatominos se infectan al alimentarse de un mamífero o del humano que presentan tripomastigotes sanguíneos (Martínez *et al.*, 2014). La relación triatominoto-*T. cruzi* puede ser un caso de posible manipulación por parásitos. Por ejemplo, se ha visto que los triatominos a menudo exhiben conductas de alimentación diferentes cuando están parasitados que cuando no lo están: los primeros aumentan sus piquetes y toma de sangre, muestran una detección más rápida del hospedero y acortan el
tiempo de deyección (lo cual facilita la transmisión del parásito) (Botto et al., 2006). Sin embargo, no existe una investigación que formalmente haya puesto a prueba la posible manipulación. En este estudio, se puso a prueba la posible manipulación de la conducta del triatominio _Meccus pallidipennis_ (Hemiptera: Reduviidae) (Stal, 1872), por _T. cruzi_. En particular, pusimos a prueba las predicciones de que los triatominos infectados con _T. cruzi_ serán más activos y preferirán más los compuestos que caracterizan la piel del humano que las chinches no infectadas.

Para poner estudiar la actividad, se utilizaron triatominos en estadio 3, 4 y 5, y se separaron en tres diferentes grupos. Dos de estos estaban infectados con diferentes aislados de _T. cruzi_ (Morelos y Chilpancingo) mientras que el tercero se usó como testigo (libre de infección). Se hicieron observaciones de manera individual, colocando los animales en refractarios para el registro de su conducta. Se registraba el tiempo (en segundos) en que se mantuvieron en movimiento durante 5 minutos. Para saber si las preferencias de olor, se realizaron pruebas con un olfatómetro de acuerdo con Guidobaldi y Guerenstein (2016). Nuevamente se utilizaron tres grupos de triatominos (N=76 cada uno) con un mes de inanición. Se colocaron los animales de manera individual en unos dispositivos durante 15 horas (1600 a 2000 hrs) en donde se ponía a prueba el compuesto que simula olor humano (ácido láctico, ácido hexanóico e hidróxido de amonio) contra el control (agua). Posterior a ese tiempo (en la mañana del día siguiente), se realizó el registro de la preferencia de olor (si eligieron el compuesto o el control). Los datos obtenidos se evaluaron con el programa GraphPadPrism 7.

Nuestros resultados indicaron diferencias en la actividad de las chinches en función su edad y tratamiento (F= 498.05, gl= 1,2019, p = 0.002). Sin embargo, sólo el tratamiento fue significativo (F = 7.522, gl= 2,4134, P = 0.42) más no así la edad (F = 2.3, gl= 2,4134, P =0.213) ni la interacción de estas dos variables (F= 0.924, gl= 4,246, P = 0.45). Esto quiere decir que la actividad de las chinches fue mayor cuando estuvieron infectadas que cuando no para las tres edades. Las pruebas posthoc indicaron que las chinches infectadas con aislados de Chilpancingo y Morelos fueron más activas que las que no estuvieron infectadas (P = 0.005, P =
0.006 respectivamente) (Figura 1), pero no hubo diferencias en los dos grupos de infectadas (P> 0.05).

Las chinches infectadas se dirigieron detectaron más el olor humano (Chipancingo = 29, Morelos = 22) que las no infectadas (control = 10; prueba de Fisher, P < 0.0001) (Figura 2).

En varios estudios se ha encontrado que *T. cruzi* modifica la fisiología de la chinche, para aumentar su adecuación. Al pasar por los compartimentos intestinales, el parásito debe lidiar con componentes y enzimas digestivas que pueden afectar su
establecimiento y replicación. Esto supondría exigencias que impondría una fuerte selección contra el parásito. Dado que la chinche es un hospedero intermedio, conviene a los intereses del parásito, maximizar la conducta de la chinche para que el parásito pueda pasar al hospedero final. Creemos que lo que hemos encontrado sugiere manipulación por el parásito. Habría que considerar en futuras investigaciones si esta manipulación no conviene a los intereses de la chinche.

Literatura citada

**ACTIVIDAD LARVICIDA DE ACEITES ESENCIALES PARA EL CONTROL DE *M. domestica*.

Heriberto Miguel Villegas-Ramírez*, Gustavo Ponce-García, Sergio Arturo Galindo-Rodríguez, Adriana Elizabeth Flores-Suárez y Rocío Álvarez-Román.

Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas UANL, México. CP 66400.

*Autor de correspondencia: correo H.villegasrmz28@gmail.com

Musca doméstica es uno de los insectos íntimamente asociados con humanos, se alimentan y se reproducen en la materia en descomposición. Recientes análisis y observaciones en laboratorio han demostrado que pueden encontrarse más de 100 agentes infecciosos para el hombre y los animales. Es considerada de importancia económica en aprovechamientos ganaderos, infectando los productos pecuarios y transmitiendo diversos patógenos a los animales. Ante la necesidad de encontrar nuevas alternativas para el control de insectos plagas y reemplazar así los insecticidas sintéticos, surgen los insecticidas botánicos dando seguridad para el medio ambiente. En el presente trabajo, se determinó la actividad larvicida de 6 aceites esenciales de las especies *Schinus molle, Eucalyptus globulus, Rosmarinus officinalis, Thymus vulgaris, Lavandula sp.* y *Poliomintha longiflora*, utilizando un modelo de caja petri con salvado para determinar su uso potencial como agentes biológicos botánicos en el control de *M. doméstica*. Posteriormente, por medio del programa provit IRMA v.2, se determinó la CL$_{50}$ de cada una de las plantas mencionadas.

Musca doméstica es uno de los insectos contaminantes más comunes en los asentamientos humanos y se ha asociado como vector de diversos patógenos alimentos (*Kumar et al.*, 2012).

La forma de transporte de éstos, y otros muchos patógenos, se realiza físicamente gracias a las vellosidades del cuerpo, almohadillas de las patas y en el interior de su aparato digestivo (*Moissant, et al.*, 2004).
Dada a la restricción del uso de fumigantes comunes y la resistencia que han desarrollado contra éstos, ha crecido la necesidad de crear nuevas alternativas para controlar las pestes de insectos (Pascual, Villalobos et al., 2003).

Los aceites esenciales son considerados como un recurso natural para la obtención de nuevos insecticidas, ya que su naturaleza lipofílica facilita la interferencia de procesos metabólicos, fisiológicos y comportamentales esenciales para los insectos (Prajapati et al., 2005).

El hombre en su intento por combatir las plagas ha hecho un uso desmedido de insecticidas químicos, pudiendo ser, por su fácil accesibilidad y/o por sus bajos precios, generando daños al medio ambiente.

Los aceites esenciales vegetales (AE) y/o sus constituyentes tienen un vasto espectro de actividad contra plagas de insectos y ácaros, patógenos de plantas, hongos, y nematodos.

Finalmente, desde un punto de vista económico y ecológico, el desarrollo de productos naturales es una de las nuevas llaves en el control de vectores. Así mismo su eficacia va más allá que la de los productos químicos, que dejan a su paso numerales consecuencias en el medio ambiente.

Hidrodestilación. Se utilizo un destilador tipo clevenger, donde la materia prima vegetal recién colectada (Hojas), es primeramente cortada en pequeños trozos y se pesaron 200 g de hoja, se introducen en un matraz bola con 1200 ml de agua, se calienta a una temperatura de 95°C y se mantiene la temperatura por 4 horas. El producto es una fase orgánica liquida amarillenta. Después de obtener el aceite esencial se pasa a un frasco ámbar y se mantiene en un congelador a una temperatura de -10 °C.

Cría de M. doméstica. La colecta se realiza en un rancho ganadero en Escobedo, Nuevo León, las coordenadas fueron 25°48´39´´N 100°18´40´´O. Los ejemplares colectados, se colocaron en cajas de 27 cm X 27 cm, junto con una etiqueta. Las condiciones de cría se basaron en el protocolo establecido por G. Martiradonna et al. (2009), realizando modificaciones en las condiciones y el alimento.
Se colocó el alimento en un plato hondo, donde se hizo la mezcla de 80 g salvado, previamente esterilizado junto con los 10 g levadura, más los 200 ml de agua a una temperatura de 25°C. El alimento descrito fue tanto para adultos como para larvas.

Desarrollo de la emulsión. La formulación se lleva a cabo utilizando 12 ml de tween al 1% (p/v) y se adiciona volúmenes variables del aceite esencial para obtener concentraciones finales en las emulsiones individuales de 250, 500, 1000, 1500, 2000, 2500 y 3000 ppm. La incorporación del aceite para formar la emulsión se hizo homogeneizar a 6000 rpm durante 3 min.

Bioensayos Se realiza en base al bioensayo de Kumar et al. (2011) con una modificación mediante la manera de aplicación de aceite esencial, donde se utiliza salvado de trigo como cebo en cajas Petri de 60x15 mm, se agrega los mililitros necesarios de emulsión, donde se mezcla y se agrega 10 larvas de segundo estadio. Se realizaron 6 repeticiones y un control, el criterio de mortalidad se tomó a 24 y 48 h, considerando que el color marrón obscuro se tomó como larvas no vivas.

Determinación de concentración letal media (CL\textsubscript{50}). Los resultados en los ensayos obtenidos se analizaron mediante el programa IRMA v .02, para la determinación de CL\textsubscript{50} de cada uno de los aceites esenciales.

<table>
<thead>
<tr>
<th>Especie vegetal</th>
<th>E. globulus</th>
<th>S. molle Hoja</th>
<th>S. molle Fruto</th>
<th>P. longifora</th>
<th>R. officinalis</th>
<th>Lavandula sp.</th>
<th>T. vulgare</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL\textsubscript{50}</td>
<td>1160</td>
<td>1232</td>
<td>1276</td>
<td>1251</td>
<td>1444</td>
<td>1935</td>
<td>2865</td>
</tr>
<tr>
<td>Límite Inferior</td>
<td>969</td>
<td>1046</td>
<td>1096</td>
<td>1076</td>
<td>1219</td>
<td>1590</td>
<td>1998</td>
</tr>
<tr>
<td>Límite Superior</td>
<td>1390</td>
<td>1450</td>
<td>1485</td>
<td>1454</td>
<td>1710</td>
<td>2355</td>
<td>4108</td>
</tr>
</tbody>
</table>

Tabla 1. Composición de alimento de *Musca doméstica*.

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvado de trigo</td>
<td>80g</td>
</tr>
<tr>
<td>Levadura</td>
<td>10 g</td>
</tr>
<tr>
<td>Agua</td>
<td>200 ml</td>
</tr>
</tbody>
</table>
Se evaluó el efecto larvicida de los aceites esenciales por medio de la determinación de la CL₅₀. *E. globulus* presentó una CL₅₀ = 1160 ppm, P. Kumar *et al.* (2012) realizaron un ensayo por aplicación tópica, donde la CL₅₀ = 2.73µl/cm². La CL₅₀ de *S. molle* hoja y fruto fueron de 1232 y 1276 ppm, donde se puede decir que son similares, Urzua *et al.* (2011) realizaron un ensayo por contacto con *S. latifolius* en *M. doméstica*, donde obtuvo una CL₅₀ = 31.98 mg/dm³. *Poliomintha longifora* obtuvo una CL₅₀ = 1251 ppm. M. Govindarajan *et al.* (2015) realizaron ensayos contra *Cx. quinquefasciatus* determinando las CL₅₀ las cuales fueron 67.00, 74.14, 80.35 y 84.93 µg/ml, los autores atribuyeron a los compuestos de la planta el efecto insecticida sobre los mosquitos.

Pavela (2007) realizó ensayos con larvas y adultos de *M. doméstica*, donde se hizo por contacto (tópica) la aplicación del aceite, obteniendo una DL₅₀ = 55.8 µg/mosca en hembras adulto y una DL₅₀ = 83.5 µg/mosca en macho adulto. En el presente trabajo se obtuvo una CL₅₀=2865 ppm.

Bosly, A. Hanan. (2013) determinó por un ensayo por contacto, mediante el ensayo de cajas petri, la CL₅₀ es de 225 ppm, en el ensayo realizado se obtuvo una CL₅₀ de 1935 ppm.

R. officinalis se ha reportado para el control de diferentes organismos, la CL₅₀ es de 1414 ppm en el presente estudio, I. Zibaee *et al.* (2015) realizaron un ensayo contra *M. doméstica*, el cual obtuvo una CL₅₀ = 10.89 ppm por medio de un cebo en el que se mezcló con el aceite para así determinar la toxicidad del aceite.

Literatura

Zibaee, I. P.; Khorram, 2015. Efecto sinérgico de algunos aceites esenciales sobre la toxicidad y los efectos de desmontaje, contra mosquitos, cucarachas y moscas domésticas.

Chintalchere, J.M; S. Lakare y R.S. Pandit, (2013) Bioeficacia de los aceites esenciales de *Thymus vulgaris* y *Eugenia caryophyllus* contra *M. doméstica* L.

M. Govindarajan, M. Rajeswary, S.L. Hoti, G. Benelli, 2015, potencial larvicida de carvacrol y terpinen-4-ol del aceite esencial de *O. vulgare* (Lamiaceae) contra *A. stephensi*, *A. subpictus*, *C. quinquefasciatus* y *C. tritaeniorhynchus* (Diptera: Culicidae).

Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS. 2005. Insecticida, repelente y disuasor de oviposición, Actividad de aceites esenciales seleccionados contra *A. Stephensi*, *A. aegypti* y *C. quinquefasciatus*.

CONTROL BIOLÓGICO DE MOSQUITOS VECTORES DEL PALUDISMO CON NEMÁTODOS PARÁSITOS *Romanomermis* spp.

1° Rafael Pérez-Pacheco, 1° Sabino Martínez-Tomas, 2° Carlos Granados-Echegoyen, Ninfa Ruiz Santiago, Dorian Ortiz López, Fidel Diego Nava, José Abimael Campos- Ruiz, Fernando Ruiz-Ortiz.

1° Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, (CIIDIR-IPN-OAXACA), Hornos 1003, Col.Indeco Xoxocotlán, Oaxaca, México.

2° Catedra CONACYT Universidad Autónoma de Campeche.

Autor de correspondencia: correo rafaelperezpacheco@yahoo.com

Como una alternativa al uso de insecticidas químicos se propone el control biológico con nemátodos parásitos, el cual se basa en la aplicación de una biolarvicida a base de nemátodos *Romanomermis culicivorax* y *Romanomermis iyengari*. Estos biolarvicidas que se caracterizan por ser específicos para larvas de mosquitos, no afectan a la fauna acuática, se pueden producir a bajo costo, con materias primas locales, y se pueden establecer en los criaderos tratados debido a que reciclan biológicamente, manteniendo un control biológico a media plazo (Pérez, *et al.*, 1996). En la línea de investigación de control biológico de mosquitos desarrollada en el CIIDIR-IPN-OAXACA, se han realizado diversas actividades como son:

a) Estudios de laboratorio y campo para determinar la capacidad parasitaria de los nematodos en larvas de mosquitos. Los resultados alcanzados son satisfactorios, demostrando la alta susceptibilidad de los mosquitos anofelinos vectores del paludismo al parasitismo de los nematodos.

b) Se estableció una planta de producción masiva de nematodos parásitos, en la cual se producen 120 millones de nematodos al mes para su aplicación en 40 mil m² de área de criadero.
Se aplicaron nematodos *Romanomermis iyengari* en el 100% de criadero de larvas de mosquitos *Anopheles pseudopunctipennis* de tres comunidades “El Tomatal, La Culebra y Juan Diego” del municipio de Santa María Colotepec, Pochutla, Oaxaca. Con el objetivo de evaluar a media escala el control potencial de *R. iyengari* sobre larvas de mosquitos *Anopheles pseudopunctipennis*.

Previamente a la aplicación de nematodos, se realizó un muestreo pretratamiento en los criaderos estudiados para determinar las densidades larvarias, y estados larvales presentes; para ello se utilizó un cucharon y se calculó el índice de larvas por calada, que es el número de larvas capturadas entre el número de caladas efectuadas, colectando muestras cada 10 m de superficie de criadero, metodología utilizada por el programa paludismo de la Secretaría de Salud. El Biolarvicida (Nematodos preparasíticos) utilizado se obtuvo de cultivos de nematodos provenientes de la planta de producción masiva de nematodos establecida en el CIIDIR-IPN-OAXACA, que se localiza en Xoxocotlán, Oaxaca, México. Los cultivos hechos en base de arena de rio fueron anudados una noche antes del día de su aplicación, con el objetivo de inducir la eclosión de los huevecillos y la emersión de los preparasíticos, al día siguiente se colectó el biolarvicida o inóculo (agua conteniendo los preparasíticos o larvas infestivas) en bidones de 20 L y se determinó la concentración de nematodos preparasíticos en la solución a través del método de dilución volumétrica, como lo escribió (Petersen y Wilis, 1972). Para los tratamientos de los criaderos se utilizaron dosis de 5 mil preparasíticos (larvas de primer estadio del nematodo, que presentan un estilete para penetrar larvas de mosquitos) por m². La aplicación se realizó con mochilas aspersoras que se utilizan en agricultura. Para evaluar la efectividad del biolarvicida a las 72 horas después del tratamiento, se colectó una muestra de larvas de mosquitos (20 larvas por cada tramo de 100 m lineales de criadero), usando la red para capturar larvas y se llevaron al laboratorio para ser disectadas utilizando un microscopio estereoscopio y verificar la infestación del nematodo (Levy y Miller, 1977). Se calculó la media de infestación (número de nematodos en el interior de una larva) y el % de larvas parasitadas. La densidad larvaria (índice de larvas por calada) postratamiento se
CONGRESO NACIONAL DE ENTOMOLOGÍA APLICADA

estimó a las 5 días después de la aplicación, para conocer el porcentaje de reducción de población larval, también utilizando el método del cucharón.

Con la aplicación del nematodo de la especie *Romanomermis iyengari* en criaderos naturales de larvas de mosquitos anofelinos se obtuvieron los siguientes resultados que se describen en tres diferentes comunidad de Santa María Colotepec, Pochutla, Oaxaca. En la localidad “El Tomatal” se realizó una aplicación de nematodos en un área de 12660 m² y se observa en promedio una media de infestación de 2.2 nematodos por larva de mosquito y un rango de 73.1 a 100% de parasitismo. En la localidad “La Culebra” se aplicaron nematodos en un área de 5225 m² obteniendo un promedio de infestación de 1.6 nematodos por larva y un rango de 76.33 a 88.33 % de parasitismo. En la localidad “Juan Diego” se realizó la aplicación de nematodos en un área de 1703 m², y se obtuvo en promedio una media de infestación de 3.47 nematodos por larva y un rango de parasitismo de 79 a 88 %. De acuerdo a los resultados se pudo observar elevados porcentajes de parasitismo con valores que oscilaron entre 71-100%. Una evaluación posterior a la aplicación del biolarvicida determinó una reducción larval entre 79-88%.

LITERATURA CITADA

EFECTO LARVICIDA DEL EXTRACTO NATURAL DE PIRUL *(Schinus molle)* SOBRE Culex quinquefasciatus & Aedes aegypti (DÍPTERA, CULICIDAE).

Aarón Francisco Farias-Marroquín, Gustavo Ponce-García, Sergio Arturo Galindo-Rodríguez, Adriana Elizabeth Flores-Suárez y Rocío Álvarez-Román

Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas UANL, México. CP 66400

Autor de correspondencia: correo aaron_farias@hotmail.com
Culex quinquefasciatus (Say, 1823) y Aedes aegypti (L.) son dos especies de gran importancia para el área clínica de la entomología. Cx. quinquefasciatus, es el vector de distintos agentes patógenos al hombre, a los animales y de algunos agentes productores de zoonosis. (Rojas-Mogollón, Hernández-Neuta, Moncada-Álvarez, Quiñones P., & Rentería-Ledezma, 2013). Por otro lado, la especie Ae. aegypti, además de ser la especie implicada en la transmisión de dengue y fiebre amarilla, es responsable también de la transmisión de otras enfermedades, como Chikungunya y ciertos tipos de encefalitis. (Jorge R. & Philip, 2015)

Debido a los reportes de resistencia de los vectores a algunos químicos insecticidas de uso frecuente, así como la disminución de la susceptibilidad de los mosquitos a la actividad de los piretroides (Kasai, et al, 2014), es necesario de manera urgente encontrar alternativas para su control. (Rodríguez Amado, Picanço Souto, Santos Magalhaes, Escalona Arranz, & Tavares Carvalho, 2017)

Algunos componentes vegetales y sus derivados han mostrados actividad contra ácaros, roedores, nematodos, bacterias, virus, hongos e insectos. Entre estos últimos se encuentran los mosquitos. (Wiley, 1988)

Las investigaciones actuales en cuanto al uso de sustancias vegetales para el control de mosquitos se enfocan en encontrar especies con alto potencial en la eliminación de larvas de mosquito para implementar estrategias de control y manejo integrado de mosquitos, haciendo uso de los recursos naturales. (Sanabria, Segovia, González, Alcaraz, & N de Bilbao, 2009)

La especie Schinus molle ha sido reportada como una de las especies evaluadas como potenciales repelentes para vectores de distintos insectos. (Zumaquero- Rios, Rodríguez- Hernández, Barrientos-Gutierrez, & Romero-Napoles, 2016) Se recomiendan futuros estudios en las actividades insecticidas de la especie.

Con la finalidad de combatir distintas plagas y evitar la propagación de enfermedades de importancia clínica para poblaciones urbanas y rurales, el ser humano ha echado mano de las herramientas a su alcance, sin tomar en cuenta los riesgos y las desventajas que presentan.
Debido a la resistencia que han presentado algunos vectores y la toxicidad que presentan algunos productos para la sociedad, es necesario encontrar la manera de erradicar las especies que presenten una amenaza con productos amigables con el ambiente y con las especies que cohabitan.

Los extractos vegetales representan una solución a los riesgos presentados por otros agentes químicos, así como a los altos costos químicos y ambientales. Representan unos de los métodos de control de insectos más antiguos y efectivos. Se realizó una extracción tipo “Soxhlet”, en la cual la materia vegetal seca (Fruto), fue triturada y, posteriormente se pesaron 200g de esta y se agregó a un matraz bala junto con 1200 ml de hexano.

Se mantuvo la temperatura durante 4 horas, el solvente restante fue desecharo y el extracto obtenido fue purificado mediante el uso de un rota-vapor, para después ser transferido a un frasco ámbar y almacenado a temperatura ambiente (22-25°C).

Se utilizaron cepas susceptibles de Cx. quinquefasciatus y Ae. aegypti, así como cepas silvestres provenientes de los municipios de Escobedo y Monterrey respectivamente, ambos pertenecientes al estado de Nuevo León, México.

Los huevos y/o larvas colectadas se colocaron en charolas hondas con agua a una temperatura promedio de 25°C y se agregó alimento (Hígado de res en polvo) a discreción.

Posteriormente las pupas fueron trasladadas dentro de un recipiente, para su emergencia dentro de jaulas de 30 x 30 cm. Los adultos fueron alimentados con una solución de azúcar al 10% y alimentándose cada 2 días con sangre. Los bioensayos fueron realizados con base en la metodología de la OMS (con ciertas modificaciones). Se utilizaron vasos desechables de 10oz con 100ml de agua destilada, agregando la dosis requerida del extracto, mezclando y posteriormente agregando 20 larvas de tercer estadio tardío. Se realizaron 3 repeticiones y un control, el criterio de mortalidad se tomó a 24 horas y considerando a las larvas que no respondían a estímulos como muertas.
Los resultados en los ensayos obtenidos se analizaron mediante el programa IRMA v.02, para la determinación de CL$_{50}$ de cada una de las poblaciones.

Tabla 1. Concentración letal media (ppm) del extracto hexanico de *Schinus molle* en larvas de tercer estadio. Analizado con el programa IRMA V.02.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Culex quinquefasciatus</th>
<th>Aedes aegypti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Susceptible</td>
<td>Campo</td>
</tr>
<tr>
<td>CL$_{50}$</td>
<td>34.6</td>
<td>53.9</td>
</tr>
<tr>
<td>Límite inferior</td>
<td>3.6201</td>
<td>3.9616</td>
</tr>
<tr>
<td>Límite superior</td>
<td>3.6683</td>
<td>4.0161</td>
</tr>
</tbody>
</table>

Al realizar los bioensayos se encontró que el extracto presenta una evidente actividad larvicida en ambas especies con las que se trabajó. También es posible evidenciar que ambas cepas susceptibles tuvieron una mayor sensibilidad al extracto, en comparación con las silvestres.

Esta diferencia puede deberse a la continua exposición que ha tenido la cepa silvestre de *Ae. aegypti* ante diferentes xenobióticos en el ambiente, entre ellos piretroides y organofosforados tales como deltametrina, lambdacloporina, cifultrina, malation y temefos que se han usado para el control tradicional (Amariles-Barrera S, García CM & Parra-Henao G, 2013)

De la misma manera, se sabe que *Cx. quinquefasciatus* presenta resistencia debido a la exposición de agentes ya mencionados.

Kurmay, *et al.* (2014) realizó bioensayos con extracto etanólico de *S. molle* en larvas silvestres de tercer estadio de *Cx. quinquefasciatus* y obtuvo una mortalidad de 53.3% a 60ppm en 24 horas. Lo cual se asemeja a la dosis obtenida en la CL$_{50}$ en los ensayos con la misma especie y cepa similar en esta investigación.

Literatura citada.

CARACTERÍSTICAS DE HÁBITAT Y COMPORTAMIENTO DE DEPREDACIÓN DE Lutzia bigoti Bellardi (DIPTERA: CULICIDAE) DEL MEZQUITAL DURANGO.

Los mosquitos (Diptera: Culicidae) son uno de los grupos de insectos más estudiados a nivel mundial, ya que son capaces de transmitir un cúmulo de enfermedades al hombre como la malaria, fiebre amarilla, dengue (Ibáñez-Bernal, 2009), Zika o Chikungunya (OMS, 2017). Por lo que históricamente, se ha tratado de controlar sus poblaciones a través de diferentes estrategias, como la eliminación de los micro-hábitat larvarios (llantas, botes, piletas, huecos de árboles, entre otros) y el uso de insecticidas (OMS, 2017). Sin embargo las poblaciones de mosquitos han generado una rápida resistencia a los ingredientes activos de los insecticidas (Brown 1986), lo que ha ocasionado una reinfestación no solo en México sino en todos los países tropicales y subtropicales e incluso fríos de todo el mundo (Badii et al., 2007).

Esta problemática ha ocasionado que se utilicen estrategias alternativas para el control de mosquitos entre las que destacan los estadios larvarios de las especies del género *Lutzia* Theobald, (Diptera: Culicidae), las cuales son consideradas como depredadoras voraces de otras especies de mosquitos (Pramanik et al., 2016).

En México, el género *Lutzia* está representado por dos especies *Lutzia allostigma* Howard, Dyar & Knab, y *Lutzia bigoti* Bellardi, ambas especies con afinidad neotropical, esta última se ha encontrado en los estados de Chiapas, Guerrero, Hidalgo, Michoacán, Morelia, Nayarit, Oaxaca, San Luis Potosí, Veracruz y Tamaulipas (Ibáñez-Bernal y Martínez-Campos, 1994, Ortega-Morales et al., 2015).

En todos los casos no se precisan las características específicas de la localidad como ubicación exacta, tipo de clima, topografía, precipitación, humedad relativa, entre otras. Tampoco se precisan características biológicas de la especie en sus diferentes estadios como fenología, hospederos, hábitos de alimentación, potencial de depredación de las larvas, etc., adicionalmente se desconocen aspectos ecológicos como la interacción presa-depredador o el comportamiento de
depredación. Por tanto, el objetivo de este trabajo es contribuir al conocimiento sobre algunas características del hábitat, aspectos de depredación y biológicos de *Lutzia bigoti* del Mezquital Durango.

El muestreo se realizó en el balneario la Joya, localizado en el Municipio del Mezquital Durango (Figura 1). Se muestreo una vez por mes en los meses de julio-octubre. Para el muestreo de larvas se utilizaron cucharones con un volumen de 300 ml sobre cuerpos de agua profundos y pipetas Pasteur con volumen de 30 ml para cuerpos de agua poco profundos. Para adultos se utilizaron trampas de luz, redes entomológicas y aspiradores manuales. Larvas y adultos se mantuvieron vivos en recipientes de plástico y se trasladaron a la colección entomológica del Instituto Politécnico Nacional CIIDIR Unidad Durango.

Los adultos se montaron en alfileres entomológicos. El 50% de las larvas se colocaron en una cámara de cría con humedad relativa de 50% y temperatura de 27°C, adicionalmente se alimentaron con larvas de *Aedes aegypti* Linnaeus hasta llegar a la etapa adulta, posteriormente se colocaron dentro de una caja de plástico de 30x30 cm modificada, una vez que emergían los adultos, a las hembras se les proporcionó un ratón y cebo humano, cada uno por dos horas en la mañana y dos horas por la tarde, esto durante dos semana para determinar la preferencia de alimento. El resto de las larvas se fijaron con agua hirviendo por tres minutos, posteriormente se montaron en laminillas permanentes para su identificación taxonómica.

Los ejemplares se identificaron con las claves de Ibáñez-Bernal y Martínez-Campos (1994) y fueron corroborados por el Dr Sergio Ibáñez-Bernal del Instituto de Ecología A.C Xalapa Veracruz. Los datos de clima, precipitación y humedad relativa fueron tomados de las cartas climáticas del INEGI. El tipo de vegetación es en base a la clasificación de Rzedowski (2006).
Se obtuvieron un total de tres adultos, 343 larvas de primer estadio, seis larvas de cuarto estadio y 1873 huevos de *Lutzia bigoti*. Es la primera vez que se registra *Lutzia bigoti* para el estado de Durango.

Las larvas se encontraron únicamente en cuerpos de agua poco profundos (Ver video) en asociación con larvas de mosquitos de *Aedes aegypti*, *Aedes epactius* Dyar & Knab, *Culex coronator* Dyar and Knab, *Culex quinquefasciatus* Say, *Culex salinarius* Coquillett y *Chironomus* sp. Se observó a la hembra depositar huevecillos siempre y cuando en los cuerpos de agua hubiera huevecillos de otras especies de mosquitos culcídidos, ya que en cuerpos de agua que carecían de huevos de otras especies de mosquitos no se encontraron huevecillos de *Lutzia bigoti*. Durante la cría, las larvas de primer estadio de *Lutzia bigoti*, se alimentaron de larvas que recién emergían de los huevecillos de *Aedes aegypti*. Se observó que *Lutzia bigoti* tardaba de pasar del primer estadio larval al cuarto estadio aproximadamente en tres días. Cuando se colocaron ratones y cebo humano para la alimentación de las hembras, estas no se alimentaron de ninguna de las dos opciones ofrecidas por lo que probablemente no es se alimenta de sangre (Harbach, 2014). La localidad estudiada pertenece a la región neotropical, se encuentra dentro del cañón del mezquital con coordenadas (23° 28’ 00.25''N, 104° 22’ 08.25''O), tipo de clima...
árido-semicálido con lluvias en verano. Por esta localidad cruza el séptimo río más caudaloso de México (San Pedro Mezquital) (WWF).

Literatura citada

En este trabajo se estudia la factibilidad de utilizar larvas de *Tenebrio molitor* (Linnaeus, 1758), (COLEOPTERA: TENEBRIONIDAE) como materia prima para la producción de biodiesel. El biodiesel como combustible alterno, tiene el potencial para reducir la dependencia energética del petróleo así como de disminuir la emisión de gases de efecto invernadero. El biodiesel consiste en una mezcla de metilésteres producidos a partir de fuentes renovables y que presenta la ventaja de ser biodegradable, no toxico, libre de azufre y presentar un bajo perfil de emisiones (Shaarma *et al*., 2008). La materia prima utilizada para la producción de este biocombustible es muy variada y consiste en aceite proveniente de semillas oleaginosas como: girasol, soya, colza o palma, linaza, jatropha aunque también puede producirse a partir de material de desecho como aceite vegetal usado o grasa animal (Pinzi *et al*., 2013) y en los últimos años se ha propuesto su extracción de microrganismos con alto contenido lípido como las microalgas (Meng *et al*., 2009).

Aunque se ha estudiado el uso de las larvas de *Tenebrio molitor* como fuente de producción de aceite, solo se ha analizado su uso para consumo humano debido a sus características comparables con las del aceite de oliva (Pantoja y Bermúdez, 2010), (Jeon *et al*., 2016). No obstante, este uso está lejos de ser popularizado en nuestro país y por ello surge la necesidad de estudiar la factibilidad de utilizar este aceite como materia prima en el proceso de producción de biocombustibles.
Extracción del aceite. Las larvas fueron rostizadas en una mufila a 200 °C con una rampa de calentamiento de 2°C/min y la temperatura se mantuvo durante 10 minutos. La masa fue medida antes y después para determinar el contenido de agua retirada. La extracción del aceite se realizó en un equipo soxhet a 85°C con reflujo con n-hexano durante 4 horas. Las características del aceite se muestran en la tabla 1:

<table>
<thead>
<tr>
<th>Característica</th>
<th>Unidades</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice de saponificación</td>
<td>Mg KOH/g aceite</td>
<td>192</td>
</tr>
<tr>
<td>Índice de yodo</td>
<td>g I/ 100 g aceite</td>
<td>89.8</td>
</tr>
<tr>
<td>Índice de acidez</td>
<td>%</td>
<td>1.65</td>
</tr>
<tr>
<td>Índice de peróxidos</td>
<td>Meq O₂/kg de aceite</td>
<td>2.4</td>
</tr>
<tr>
<td>Perfil lipídico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ácido oleico</td>
<td>%</td>
<td>51.33</td>
</tr>
<tr>
<td>Ácido linoleico</td>
<td>%</td>
<td>22.47</td>
</tr>
</tbody>
</table>

Producción de biodiesel

Se llevó a cabo una reacción de transesterificación del aceite se realizó en un micro reactor batch a reflujo en presencia de metanol con una relación molar de aceite: metanol de 6:1 y 5%w de catalizador durante 5 horas. Se dejó decantar para apreciar la separación de las fases como se observa en la figura 1, la fase transparente es rica en glicerina y la capa inferior es la que contiene el biodiesel. Esta porción fue lavada con una solución salina para retirar el glicerol que pudiera estar presente y se calentó a 60°C por 30 minutos para retirar el metanol residual.

El catalizador utilizado se observó mediante microscopia TEM y notó que los poros presentan una forma regular hexaédrica que recuerdan al de un panal permitiendo...
que se realice la reacción química con éxito. El aceite y el biodiesel fueron analizados mediante espectroscopia de infrarrojo para confirmar la formación del biodiesel y glicerina. El rendimiento del biodiesel fue del 95%.

Se comprobó que las larvas de *Tenebrio molitor* son materia prima potencial para la producción de biodiesel y que se obtuvo un excelente rendimiento. Aunque existen diversos estudios con diferentes fuentes de materia prima, el uso de este insecto presenta ventajas importantes sobre los demás como son: la reproducción de este insecto no requiere el cambio del uso del suelo como en el caso de los aceites vírgenes que provienen de semillas, no requiere de sistemas de recolección como en el caso del aceite quemado o grasa animal de desecho, y cuando se compara con el procesos de extracción de aceite de otro organismo vivo como las algas se aprecia que en este caso es mucho más sencilla y económica que la del difícil proceso de disrupción celular necesario en el caso para las micro algas.

Literatura Citada

Pinzi, S. , Leiva, D. , Lópe

REVISIÓN DE LA FAMILIA BOSTRICHIIIDAE LATREILLE, 1802 (ORDEN COLEOPTERA) EN LA COLECCIÓN ENTOMOLÓGICA DEL LABORATORIO DE BIODETERIORO E INVESTIGACIÓN DEL CENCROPAM-INBA.

Jose Miguel Flores-Calvillo¹*, Sandra Joyce Ramírez Muñoz¹, Vázquez Mendiola José Guadalupe¹ y Arvizu Cervantes Alberto¹

¹Laboratorio de Biodeterioro e Investigación, Centro Nacional de Conservación y Registro del Patrimonio Artístico Mueble (CENCROPAM-INBA). Calle San Ildefonso Numero 62, colonia Centro, Centro Histórico CP. 06000, Ciudad de México, México

*Autor de correspondencia: correo miguelfloresbio@gmail.com

El laboratorio de Biodeterioro del Centro Nacional de Conservación y Registro del Patrimonio Artístico Mueble (CENCROPAM), es el encargado del diagnóstico de agentes biológicos que afectan obra artística e implementa sistemas de tratamiento y control para la conservación y restauración del patrimonio artístico mueble.

La madera se ha utilizado como soporte de la pintura de caballete desde sus comienzos, aunque después fue sustituida por la tela. También se usa en la escultura, mobiliario y la estructura de numerosos monumentos. Por la naturaleza orgánica de este material, es muy susceptible a la degradación de agentes biológicos. (Valgañon, 2008), entre los que se encuentran los insectos, los cuales conforman uno de los grupos de mayor importancia. (CONAFOR, 2010).

Desde 2008 a la fecha, como producto de los tratamientos llevados a cabo en el laboratorio de Biodeterioro del CENCROPAM, se han colectado muestras biológicas que pueden ser rescatadas de la obra artística. Posteriormente, en el año 2017 dichas muestras se sistematizaron conformándose la colección entomológica del laboratorio con 1108 muestras, de las cuales el 70.5% está compuesto por insectos del orden Coleóptera, dentro de estos, la familia Bostrichidae es la segunda mejor representada con 28 muestras, por debajo de la familia Anobiidae. Como menciona López-Pérez, (2012), esta familia se compone por insectos xilófagos llamados
barrenadores de la madera, atacan árboles vivos o muertos e incluso madera ya trabajada causando grandes pérdidas materiales.

Para el dictamen de las obras tratadas en el laboratorio de biodeterioro e investigación del CENCROPAM la identificación de las plagas se realiza a nivel de familia; debido a que este nivel taxonómico ofrece la información necesaria para la propuesta de tratamiento. Sin embargo, la determinación taxonómica a nivel especie ayudaría a identificar de mejor manera los posibles daños producidos, las especies de mayor incidencia, así como las especies de mayor riesgo. Sin embargo, es necesario contar con especímenes que permitan la determinación hasta especie.

Para este trabajo se revisó la base de datos de las obras tratadas del laboratorio de biodeterioro e investigación del CENCROPAM. De acuerdo con la base de datos se trabajó con más de 100 obras entre los años 2008 y 2016 por problemas de insectos barrenadores; de estas, solo se han colectado 28 muestras compuestas por excretas, restos de insectos e insectos completos.

La mayoría de las muestras, fueron colectadas después del tratamiento por anoxia de las obras y durante el proceso de limpieza, mediante el cual es difícil obtener insectos completos ya que la deshidratación y manipulación tienden a destruir los cuerpos, encontrando solo partes en su mayoría de los élitros; además de las características excretas de polvo fino que producen por lo que, solo siete muestras fueron viables para la determinación.

La determinación se realizó con base en las claves “A Revision of The New World Species of Powder-Post Beetles Belonging to the Family Lyctidae” (Gerberg, 1957); con microscopio binocular compuesto Austrian Reichert. Se utilizaron características como mazo antenal, forma del fémur metatorácico, pubescencias y puntuaciones en los élitros, forma del vertex, forma del lóbulo postclipeal y lóbulo frontal. Posteriormente, se revisó la distribución de estas especies en el país mediante “(Bostrichidae, Lyctidae) Checklist of the coleopterous insects of México, Central America, The West Indies, and South America” (Blackwelder, 1945).

Se determinaron cinco especies en siete obras diferentes, todas pertenecientes a la subfamilia Lyctinae (Billberg, 1820) de las cuales tres pertenecen a la tribu Lyctini (Billberg, 1820) y dos a la tribu Trogoxylini (Lesne, 1921), como se muestra en la siguiente tabla:
Tabla 1.- Relación entre especies encontradas en las muestras y datos de las obras tratadas.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Título de obra</th>
<th>Técnica de obra</th>
<th>Fecha de tratamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyctus villosus</td>
<td>Santa Teresa y el niño Jesús</td>
<td>Óleo/tela</td>
<td>Junio 2009</td>
</tr>
<tr>
<td>Lesne, 1931</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyctus Bruneus</td>
<td>Equipal silla</td>
<td>Madera y palma tejida</td>
<td>Septiembre 2010</td>
</tr>
<tr>
<td>Stephens, 1830</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyctus villosus</td>
<td>Duela (Particular)</td>
<td>Madera</td>
<td>Diagnostico</td>
</tr>
<tr>
<td>Lesne, 1931</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyctus africanus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesne, 1907</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyctoxylon impressum</td>
<td></td>
<td>Madera, cuero y pinturas de</td>
<td>Mayo 2016</td>
</tr>
<tr>
<td>(Comolli, 1837)</td>
<td>Arco</td>
<td>aceite</td>
<td></td>
</tr>
<tr>
<td>Lyctoxylon prostomoides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gorham, 1883</td>
<td>Maqueta Danzas</td>
<td>Madera, plumas y alambre</td>
<td>Mayo 2016</td>
</tr>
<tr>
<td>Lyctoxylon prostomoides</td>
<td>Equipal</td>
<td>Bejuco y cuero</td>
<td>Mayo 2014</td>
</tr>
<tr>
<td>Gorham, 1883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyctoxylon prostomoides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gorham, 1883</td>
<td>Algodón de Morelos el arte en la</td>
<td>Fotograbado</td>
<td>Abril 2010</td>
</tr>
<tr>
<td>vida diaria</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo con lo encontrado, se reporta la presencia de cinco especies en las siete muestras revisadas por lo que, a pesar de la baja cantidad de ejemplares, se observa un notable número de especies. La mayoría con distribución en la República Mexicana, a excepción de *Lyctus africanus* (Lesne, 1907) el cual ha sido previamente reportado en Estados Unidos de América (Gerberg, 1957).

Esta riqueza de especies puede estar influenciado por distintos factores como los diversos sitios de exposición dentro y fuera de México, el almacenaje de las obras, la técnica de estas, así como su material constituyente y las infestaciones previas. Estos resultados nos permiten observar la necesidad de la revisión de otras familias de la colección. Así como que en la colecta de muestras se considere, si la obra lo permite, parte del material constitutivo, ya que podría evidenciar una relación de especie lignaria con respecto a la especie de insecto.

Es evidente, la necesidad de continuar con la investigación de insectos en obra patrimonial y generar más información sobre las plagas que los afectan; ya que en familias como Anobiidae no hay tantas referencias como los Bostrichidae, aunque también son reincidentes en el biodeterioro del patrimonio artístico.

Literatura citada.

El clima y flora de varias regiones de México proveen un ambiente favorable para el crecimiento de distintas especies de escarabajos. Sin embargo, el conocimiento acerca de su dinámica poblacional no es completamente conocida, siendo esta fundamental para entender más sobre su ecología y distribución. En particular el género *Xyleborus* ha cobrado gran relevancia por tratarse de escarabajos ambrosiales que han provocado importantes impactos a la flora nativa y agrícola en regiones del sureste de Estados Unidos (Brar *et al.* 2013, 2015) al diseminar un hongo que reduce el ciclo de vida de árboles de la familia Lauraceae (*Fraedrich, et al.* 2015).

La presente investigación estuvo enfocada a conocer el crecimiento poblacional bajo condiciones de crianza específicas del escarabajo *X. affinis*. Esta especie se encuentra ampliamente distribuida en la región del neotrópico mexicano, y puede servir como un caso relevante de estudio para entender otras especies del género *Xyleborus* que son exóticas al país y han demostrado ser especies invasoras efectivas, como es el caso de *Xyleborus glabratus*. El estudio tuvo el propósito de reducir la estocasticidad del crecimiento poblacional definiendo las características...
del medio, controlar condiciones del microambiente y usar escarabajos de la misma especie. De esta forma fue posible conocer: 1) la tasa de crecimiento poblacional, 2) evaluar el impacto de temperatura, 3) la implementación de un modelo predictivo basado en datos experimentales.

El medio para criar el escarabajo fue preparado atendiendo sus requerimientos nutricionales básicos en conjunto con características físicas que favorecen la creación de galerías. Un volumen de 15 mL fue colocado en cada tubo Falcon® de 50 mL, donde la población inició con un escarabajo hembra. Tres cámaras de crecimiento a temperaturas constantes (20 ºC, 26 ºC y 32 ºC) fueron utilizadas con un lote de 80 tubos cada una. Dada la dificultad para hacer conteos directos de la población, esta investigación condujo 8 conteos indirectos cada 4 días; tomando 10 tubos Falcon® en cada conteo.

Modelación con la ecuación de McKendrick-von Foerster (MvF) modificada. La formulación original de la ecuación MvF describe la densidad poblacional tomando en cuenta los cambios en el tiempo y en el ciclo de vida, además de la tasa de mortalidad. Una modificación de la ecuación MvF ha sido propuesta y evaluada por (Gilbert et al. 2004); donde la validación demostró que existe una predicción mejorada al agregar el término de difusión, término de la lado derecho de la ecuación siguiente.

\[\frac{\partial p(a,t)}{\partial t} + r(T) \frac{\partial p(a,t)}{\partial a} = v(T) \frac{\partial^2 p(a,t)}{\partial a^2} \]

La ecuación MvF modificada es aplicable a la predicción del crecimiento poblacional \(p \) con respecto al tiempo \(t \) y el ciclo de vida \(a \). La ecuación MvF incluye los términos tasa de crecimiento poblacional \(r \) y variabilidad en el desarrollo poblacional \(v \); ambos términos asociados al efecto de la temperatura \(T \). El último término de la ecuación se interpreta como variabilidad en el desarrollo poblacional. La población inicial debe ser definida como \(p(a,0) = f(a) \) y las condiciones de frontera deben ser como:
\[p(0,t) = \int_0^\infty b(a)p(a,t)da \]

donde \(b(a) \) corresponde a la tasa de natalidad.

El conteo periódico en cada uno de los tratamientos fue la base de datos de referencia para ajustar la ecuación MvF modificada. El proceso de ajuste implicó el uso del algoritmo de búsqueda simplex Nelder-Mead por medio del software de programación Matlab. Los coeficientes asociados con las tasas de desarrollo \(r \) y la variabilidad en el desarrollo \(v \) para el estadio de huevos fueron encontrados cuando la diferencia o error fue mínimo (utilizando el coeficiente de determinación \(R^2 \)) entre los datos experimentales y el predicho por el modelo. El inicio y fin del experimento es el día 0 y 32, respectivamente; teniendo una población inicial igual a 0, y un crecimiento de acuerdo a los 8 conteos realizados cada 4 días. La capacidad de ajuste de la ecuación MvF modificada para el estadio de huevos en temperatura de 26 °C se indica en la Figura 1, y el resumen de los valores de \(r \) y \(v \) se presentan en la Tabla 1.

![Figura 1. Dinámica poblacional para el estadio de huevos en temperatura de 26 °C.](image)

La capacidad de ajuste de la ecuación MvF modificada para el estadio de huevos en temperatura de 26 °C se indica en la Figura 1, y el resumen de los valores de \(r \) y \(v \) se presentan en la Tabla 1.
Tabla 1. Coeficientes r y v encontrados para la ecuación MvF modificada.

<table>
<thead>
<tr>
<th>Temperatura, °C</th>
<th>20</th>
<th>26</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>v (1/día)</td>
<td>0.0052</td>
<td>0.0020</td>
<td>0.0017</td>
</tr>
<tr>
<td>r (1/día)</td>
<td>3.09×10^{-9}</td>
<td>0.0260</td>
<td>0.0268</td>
</tr>
<tr>
<td>R^2</td>
<td>0.82</td>
<td>0.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>

La aplicación de la ecuación MvF modificada es una alternativa para la identificación de las tasas de crecimiento poblacional y la variabilidad en el desarrollo de una población de escarabajos sometidos a temperatura constante, utilizando el procedimiento de conteos indirectos. A pesar de que el número óptimo de conteos y el muestreo de la población en cada conteo aún no está bien definido como podría impactar en los resultados experimentales de crecimientos poblacionales de escarabajos. No obstante, esta investigación demuestra que el efecto estocástico es reducido para una población de escarabajos, permitiendo la modelación con 8 conteos durante el ciclo de vida y logrando valores de R^2 mayores a 0.82.

Literatura citada

La Protectora de Bosques del Estado de México (PROBOSQUE), es un Organismo Público descentralizado, creado en el año de 1990, que tiene como objetivo, preservar el entorno ecológico para lograr el desarrollo forestal sustentable en la Entidad, a través de acciones de protección, conservación, reforestación y vigilancia en una superficie forestal de 1,087,812 ha (Gobierno del Estado de México, 2010). La entidad se encuentra dividida en ocho regiones de importancia forestal que son atendidas por personal técnico especializado para la detección, evaluación, identificación, combate y control de plagas y enfermedades.

La disminución de los bosques es ocasionada por diversos factores, tanto económicos, ecológicos y sociales; entre las causas mayores figuran las plagas y enfermedades (Cibrián et al., 1995). Los daños que estos agentes provocan al arbolado pueden ser directos o indirectos, tales como alteraciones en su estructura, crecimiento y productividad, originando su muerte a corto, mediano o largo plazo. Aunado a esto, los incendios, sequías recurrentes, tala de árboles, cambios de uso de suelo, introducción de nuevas especies y las diversas acciones que contribuyen al cambio climático, crean condiciones favorables para el establecimiento y proliferación de plagas, lo que conlleva al aumento en la afectación y pérdida de la cubierta forestal. Ante esta situación, se requieren estudios taxonómicos que ayuden a identificar el tipo de plagas, así como su distribución en la entidad; lo que contribuirá a implementar los métodos de combate y control adecuado que permitan mantener en buenas condiciones fitosanitarias los bosques de la entidad.

Descripción del área de estudio. El Estado de México se ubica en los paralelos 18°44’ y 20°06’ de latitud norte y los 99°00’ y 100°18’ de longitud oeste, entre los 1,261 y 3,956 msnm. Limita con Querétaro e Hidalgo al norte, Morelos y Guerrero
al sur, Guerrero y Michoacán al oeste e Hidalgo, Tlaxcala, Puebla y la Ciudad de México al este. El tipo de clima varía desde el seco hasta el frío en las partes altas de los volcanes. La temperatura media anual es de 13.7°C; con mínimas de 3.0°C y máximas de 25°C. La precipitación media anual es de 900 mm. La vegetación corresponde a bosque de clima templado frío, pradera de alta montaña, selva baja caducifolia y vegetación de zonas áridas (matorral).

Colecta de especímenes. Durante el periodo de septiembre de 2015 a septiembre de 2017, se realizaron recorridos en las ocho regiones forestales de la entidad (R-I Toluca, R-II Naucalpan, R-III Texcoco, R-IV Tejupilco, R-V Atlacomulco, R-VI Coatepec de Harinas, R-VII Valle de Bravo y R-VIII Amecameca), colectando material entomológico que se preservó en frascos de cristal con alcohol al 70%, debidamente etiquetados.

Procesamiento de muestras. Se realizó en el laboratorio móvil de Sanidad Forestal de PROBOSQUE; donde se determinaron taxonómicamente con apoyo de claves y posteriormente se incorporaron en la colección. La información asociada a cada colecta fue registrada en una hoja de cálculo Microsoft Excel, 2017.

Se registraron 23 géneros y 33 especies de plagas de interés forestal, presentes en 19 especies hospederas, correspondientes a 45 localidades y 30 municipios de la entidad (Cuadro 1). El género *Dendroctonus* presentó seis especies diferentes, seguido del género *Ips* con cinco especies, mientras que, en el resto, solo se encontró una especie por cada género. En base al tipo de daños, se registraron 17 especies de insectos descortezadores, siete especies de insectos chupadores de savia, cinco especies de insectos defoliadores y cuatro barrenadores de madera (húmeda y seca).

Cuadro 1. Lista de géneros y especies de plagas forestales registradas en el Estado de México.

<table>
<thead>
<tr>
<th>Genero</th>
<th>Especie</th>
<th>Hospedero</th>
<th>Municipios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthocinus</td>
<td>obliquus</td>
<td>Pinus teocote</td>
<td>Tenancingo</td>
</tr>
<tr>
<td>Ceroplastes</td>
<td>cirripediformis</td>
<td>Populus deltoides</td>
<td>Nezahualcóyotl</td>
</tr>
<tr>
<td>Chionaspis</td>
<td>pinifoliae</td>
<td>Pinus teocote</td>
<td>Chapa de Mota</td>
</tr>
<tr>
<td>Chlorida</td>
<td>cincta</td>
<td>Pinus patula</td>
<td>Texcalitlán</td>
</tr>
</tbody>
</table>
Se tienen registros de 30 municipios de la entidad (24% de los 125 que conforman la entidad), los cuales, en su mayoría corresponden al tipo de vegetación de bosques de coníferas.

De acuerdo a los datos obtenidos, se reportó un total de 33 especies de insectos distribuidos en 67 localidades, mismas que han sido registradas previamente por diversos autores (Cibrián et al., 1995; Ruiz et al., 2013; Salinas et al., 2010).

Los municipios de Almoloya de Juárez, Coatepec Harinas, El Oro y San José del Rincón registran la mayor diversidad de géneros (cuatro) y especies (cuatro a seis).
En cuanto a los insectos descortezadores, el género *Dendroctonus* presenta seis especies distribuidas en 30 Municipios del Estado, mientras que el género *Ips*, registra cinco especies presentes en 17 Municipios.

Es por ello, que los estudios sobre biodiversidad biológica, permiten conocer los ecosistemas a través de inventarios sobre organismos emparentados, así como su abundancia (Lewis y Whitfield, 1999); lo cual representa el pilar para implementar nuevas alternativas que permitan el combate y control de plagas de importancia forestal.

LITERATURA CITADA.

SECCIÓN: DIVERSAS APLICACIONES DE LA ENTOMOLOGÍA

TASA DE SOBREVIVENCIA DE *Galleria mellonella* (LEPIDOPTERA: PYRALIDAE) DURANTE EL ESTADO LARVARIO EN EL PROCESO DE PRODUCCIÓN COMO ALIMENTO DE REPTILES.

Vanessa Santos-Luna¹, Erika López-Salgado*, Martín Palafox-Rodríguez², Guillermo A. Woolrich-Piña¹ y Laura Luna-Herrera²

Instituto Tecnológico Superior de Zacapoaxtla, ¹Cuerpo Académico de Ecología, Distribución y Conservación de Fauna Silvestre; ²Cuerpo Académico de Interacciones Ecológicas. Carretera: Acuaco-Zacapoaxtla km 8, Col. Totoltepec, Zacapoaxtla 73680, Puebla, México

*Autor de correspondencia: correo salgado_erika@hotmail.com

Dentro de los principales trabajos relacionados con *Galleria mellonella* (L.), destaca el de Realpe-Aranda *et al.*, (2007), donde busca generar una mayor optimización de la cría para la producción de nemátodos entomopatógenos, parásitos de la broca del café, tratando de optimizar el sistema de cría, empleando los nemátodos entomopatógenos *Steinernema colombiense* y *Heterorhabditis bacteriophora*, parásitos de la broca del café, con la finalidad de emplearlos en el control de la broca; este estudio consistió en determinar la duración de los cuatro estados (huevo, larva, pupa, adulto) de esta especie a diferentes temperaturas (20°C, 25°C y 30°C). El promedio de duración del estado huevo al adulto es de 178.8, 82.4 y 62.4 días; la temperatura adecuada para el desarrollo de la larva fue de 25°C, con una humedad relativa del 80%.

Por otra parte, el estudio del ciclo biológico de *Galleria mellonella* realizado por Rodríguez (2015), donde se busca estudiar el ciclo biológico de esta larva con la finalidad de emplearlo como un hospedante alternativo para la producción de controladores biológicos.

Esta investigación tuvo como objetivo principal determinar la tasa de sobrevivencia en cada una de las generaciones, la cual, se vio reflejada en el ciclo biológico dependiendo del control de los factores ambientales y en la disponibilidad de
alimento, para incrementar el número de organismos vivos y lograr una reducción en la tasa de mortalidad, con esto generar que el éxito del crecimiento poblacional siga en aumento conforme a las generaciones y no solo abarcar la alimentación demandada por parte de la colección de los reptiles sino ingresar al mercado obteniendo ganancias en la venta de estos organismos como alimento vivo para algunas mascotas debido a que la producción de estos organismos es de bajo costo y la competencia en la cría y venta de esta larva en el municipio donde se está llevando a cabo el proyecto es baja. Los estudios realizados de estas larvas son escasos, por lo que, la información obtenida y presentada es incipiente.

Esta investigación fue llevada a cabo en el laboratorio de Zoología, perteneciente al Instituto Tecnológico Superior de Zacapoaxtla, Puebla, con coordenadas 19º 49’ 49.08” Latitud Norte y 97º 37’ 12.3594” Longitud Oeste.

La metodología empleada para llevar a cabo esta investigación se describe a continuación:

Extracción y limpieza de larvas en cada uno de los frascos: para esta actividad es necesario emplear guantes de látex antes de manipular estos organismos ya que los patógenos son muy ajenos a su piel y podrían provocar lesiones, después se extrae una cantidad adecuada del sustrato, se retira la seda y se buscan los organismos, colocándolos en otro recipiente junto con alimento para que sigan obteniendo masa corporal, terminado todo el proceso en el sustrato contenedor es necesario colocar una tela junto con una liga para reforzar y evitar que los organismos escapen.

Ciclo de vida: *Galleria mellonella* se encuentra en diferentes etapas de su metamorfosis (huevo, larva, pupa, adulto), por lo cual, es necesario la separación y agrupación de estos organismos, en el estado de huevo es necesario la administración de alimento debido a que tardan en eclosionar aproximadamente dos semanas a una temperatura controlada de 25ºC, el estado larval tarda aproximadamente 19 a 30 días en pasar al estado de pupa, por ello, la dotación de alimento debe ser constante, cuando las condiciones son adecuadas se envuelven
en una forma de capullo en cuyo interior se encuentra la crisálida o pupa el cual tiene una duración de 2 semanas aproximadamente, al eclosionar los adultos solamente se reproducen y vuelve a comenzar nuevamente el ciclo con la puesta de huevecillos por parte de la hembra.

Conteo poblacional: el cual consiste en contar el número de organismos vivos y muertos de los estados de larva y pupa de cada generación para determinar el número total de organismos de cada generación.

Con base a los resultados obtenidos, se observa que la tasa de sobrevivencia oscila de 1.04 a 1.4 (Figura 1), lo cual sugiere que, la disponibilidad de alimento es más relevante en el proceso de producción, con respecto a los factores ambientales (temperatura y humedad).

Fig. 1 Tasa de sobrevivencia del estado larval de las generaciones 1-14

Por otro lado, se observa que la tasa de mortalidad y natalidad no presentan diferencias significativas en las generaciones 1 a 10, pero entre las generaciones 11 y 12 se encuentran diferencias significativas (Figura 2), en el incremento de la tasa de mortalidad y natalidad, esto se debe a la disponibilidad del alimento entre estas poblaciones el cual no fue administrado correctamente para lograr una disminución en la tasa de mortalidad entre estas generaciones, también se debe a
los factores ambientales (temperatura, humedad) que variaban significativamente debido a las estaciones en las cuales se encontraban estas generaciones.

Fig. 2 Tasa de natalidad (serie 1) y tasa de mortalidad (serie 2) de las generaciones 1-14

El autor Rodríguez-Ortega (2013) en su estudio realizado al gusano de seda nos dice en que el suministro de alimento y los factores climáticos como la temperatura, humedad y el aire afecta el crecimiento y desarrollo esta larva, ocasionando que se incremente el porcentaje de mortalidad. Esta base muestra que tanto la disponibilidad de alimento como los factores ambientales son claves para determinar si el crecimiento de la tasa de sobrevivencia aumenta o disminuye en cada generación de las larvas estudiadas, lo cual se verá reflejado en su crecimiento demográfico.

Literatura citada

ESTUDIO DE INSECTOS ASOCIADOS A CADÁVERES HUMANOS: CASO DE INSECTOS ENCONTRADOS EN CADÁVERES EN LA CIUDAD DE MÉXICO.

Samuel Araujo -Castillo*, Jesús Romero -Napoles*

*Autor de correspondencia: correo samuel_araujo_1994@hotmail.com

Introducción. La Entomología Forense es la disciplina que estudia a los insectos y otros artrópodos asociados con cadáveres, el objetivo principal de esta ciencia es la estimación del intervalo post mortem (IPM) que es el tiempo que ha transcurrido desde que se originó el deceso hasta el momento del hallazgo de un cadáver, esto mediante la identificación de especies de insectos encontrados en el cadáver o en su zona perimetral al mismo, el conocimiento acerca del ciclo biológico de estas especies es fundamental debido a que estos organismos son los primeros en arribar a un cadáver siendo testigos indirectos del deceso y fungiendo como relojes biológicos, esta disciplina es la más concreta en la determinación IPM en casos donde el estado de descomposición es muy avanzado debido a que conjunta los factores bióticos y abióticos los cuales pueden ocasionar una variación al momento de determinar el IPM (Torres y Zimman, 2006).
En las primeras fases de descomposición las estimaciones se basan en el crecimiento de una o dos especies (particularmente dípteros), mientras que en las fases más avanzadas se utiliza la composición y el grado de crecimiento de los artrópodos encontrados en el cuerpo y se comparan con patrones conocidos de sucesión de la fauna del lugar, conjuntando datos entomológicos y climáticos se puede determinar de manera más precisa el IPM (Magaña, 2001).

Como elemento en una investigación, la entomología forense está justificada por diversas razones, principalmente a que su campo de acción es aplicable en todas las etapas de descomposición de los cuerpos y por que también es una ciencia multidisciplinaria, ya trabaja en conjunto con otras ciencias forenses donde cada una aporta datos relevantes para la resolución de una investigación.

Cuando la Entomología Forense es llevada a la práctica legal, existen diversos procedimientos que han de llevarse a cabo. Siguiendo el artículo de Magaña (2001), cuando un investigador se enfrenta a una escena siempre debe de plantearse tres cuestiones principales: causas o circunstancias de la muerte, data de la muerte y lugar donde se originó la muerte. Debido a la poca información que actualmente existe en cuanto a insectos asociados a cadáveres en nuestro país, se llevó a cabo el presente trabajo para registrar algunos de las especies que se registran en cuerpos humanos en la Ciudad de México en el lapso de tiempo de 5 a 32 días.

Se recolectaron artrópodos de cuatro cadáveres que presentaban entomofauna cadavérica, una vez que los cuerpos fueron puestos a disposición legal en el área de anfiteatro del Instituto de Ciencias Forenses (INCIFO), éstos provenían de cuatro ubicaciones diferentes en la CDMX. Para su recolección se requirió de la autorización de las autoridades pertinentes y su colecta y manipulación se realizó con la indumentaria apropiada para poder ingresar al anfiteatro, esto se hizo sólo en los casos donde se presentaba material entomológico viable. Primeramente se realizó una observación externa al cadáver y se inspeccionaron sus prendas con el fin de detectar el mayor número posible de organismos los cuales al momento de
ser colectados fueron colocados en dos medios de fijación distintos, en el caso de formas inmaduras (larvas) se colectaron en tubos de cristal con XAAD (xilol, ácido acético, alcohol, dioxano) por un lapso de 24 horas, después se colocaron en etanol al 70%. Para su observación se utilizó un microscopio estereoscópico Discovery V12 marca Zeiss y para la identificación de los inmaduros se utilizó la clave propuesta por Whitwort (2006).

Para el caso de organismos en etapa adulta, en su gran mayoría se detectaron principalmente entre las prendas las cuales se inspeccionaron utilizando pinzas entomológicas, los organismos colectados fueron colocados en frascos con etanol al 70%, posteriormente se realizó su montaje en el laboratorio de Taxonomía en el Postgrado de Fitosanidad-Entomología y Acarología en el Colegio de Postgraduados. El material se observó con un estereoscopio Discovery V12 marca Zeiss. Para la identificación se usaron la claves de Almeida & Mise (2009), Arnett et al. (2012) y Kingsolver (1991). También se hizo una comparación con el material entomológico disponible en la Colección Entomológica del Colegio de Postgraduados, campus Montecillo (CEAM). Todo el material se encuentra depositado en CEAM.

En total se colectaron 48 organismos inmaduros, todos del orden Diptera, en tanto que para adultos se capturó un total de 36 especímenes del orden Coleoptera y uno de Hemiptera (Cuadro 1). Entre las especies que no tienen una relación directa con los cadáveres se encuentran: *Thasus gigas* y *Euphoria basalis*; la primera especie está registrada como una especie fitófaga que se alimenta principalmente de plantas del género *Acacia* y también en algunas comunidades se consume como alimento; en tanto que la segunda especie se considera como una plaga de las flores de la calabaza, aunque es una especie polífaga que se puede alimentar de una gran variedad de plantas. Con respecto a la especie *Platydracus fulvomaculatus*, esta sólo se ha citado como en asociación a hormigueros de *Atta*.
Cuadro 1. Especies de insectos colectadas en cuerpos humanos en la Ciudad de México.

<table>
<thead>
<tr>
<th>N. DE ORGANISMOS</th>
<th>ESPECIE</th>
<th>ETAPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Chrysomya rufifacies (Macquart, 1842) (Diptera, Calliphoridae)</td>
<td>Inmadura (larva III)</td>
</tr>
<tr>
<td>12</td>
<td>Chrysomya megacephala (Fabricius, 1794) (Diptera, Calliphoridae)</td>
<td>Inmadura (larva III)</td>
</tr>
<tr>
<td>7</td>
<td>Musca macellaria (Fabricius, 1775) (Diptera, Calliphoridae)</td>
<td>Inmadura (larva III)</td>
</tr>
<tr>
<td>1</td>
<td>Calliphora vicina (Robineau-Desvody, 1830) (Diptera, Calliphoridae)</td>
<td>Inmadura (larva III)</td>
</tr>
<tr>
<td>1</td>
<td>Eulodes nr. angulatus Blackburn, 1894 (Coleoptera: Tenebrionidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>2</td>
<td>Bothrotes sp. (Coleoptera: Tenebrionidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>2</td>
<td>Neobaphion sp. (Coleoptera: Tenebrionidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>4</td>
<td>Platyracus fulvoacutatus (Nordmann, 1837) (Coleoptera: Staphylinidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>1</td>
<td>Platydracus fulvomaculatus (Linnaeus, 1758) (Coleoptera: Staphylinidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>1</td>
<td>Nicrophorus mexicanus (Coleoptera: Silphidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>2</td>
<td>Nicrophorus quadricollis, Gistel, 1848 (Coleoptera: Silphidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>1</td>
<td>Thanatophilus truncatus (Say, 1823) (Coleoptera: Silphidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>1</td>
<td>Thasus gigas (Klug, 1835) (Hemiptera: Coreidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>1</td>
<td>Xyloryctes corniger Bates, 1888 (Coleoptera: Scarabaeidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>1</td>
<td>Euphoria basalis (Percheron, 1833) (Coleoptera: Scarabaeidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>1</td>
<td>Dermestes maculatus De Geer, 1774 (Coleoptera, Dermestidae)</td>
<td>Adulta</td>
</tr>
<tr>
<td>17</td>
<td>Oxelytrum discicollae (Brullé, 1836) (Coleoptera: Silphidae)</td>
<td>Adulta</td>
</tr>
</tbody>
</table>

Literatura Citada

RIQUEZA DE LA DIVERSIDAD DE ARTRÓPODOS EXISTENTES EN LA REGIÓN TIERRA CALIENTE DE GUERRERO.

Ludybed Escobar-Sarabia¹, Santos Rodríguez-Mejía¹∗, y Francisco Zavala-Hernández¹

¹Instituto Tecnológico de Cd. Altamirano, Estado de Guerrero, México.

∗Autor de correspondencia: correo sntmejia.sr@gmail.com

La Tierra Caliente de Guerrero es una zona con alta temperatura, teniendo una media anual de 35 °C, una mínima 18°c y una máxima de 45°c, teniendo las condiciones adecuadas para producir algunos alimentos con gran facilidad, como: melón, jitomate y maíz. Se pueden apreciar las cuatro estaciones del año, siendo que en la región tierra caliente que cuenta con dos ríos principales (Balsas y Cutzamala). Además, se cuenta con gran cantidad de organismos tanto plantas como animales endémicos como Cuinique (Spermophilus adocetus) (Admin 2009). A sí mismo cuenta con una gran diversidad de artrópodos que se localizan en región Tierra Caliente en los nueve municipios que lo conforman: Ajuchitlán del Progreso, Arcelia, Coyuca de Catalán, Cutzamala de Pinzón, Pungarabato, San Miguel Totolapan, Tlalchapa, Tlapehuala, Zirándaro. En la región Tierra Caliente de Guerrero no existe un reporte o investigación científica sobre la diversidad de artrópodos existentes. Por lo anterior se realizó una investigación para la identificación y elaboración de un listado de órdenes y familias que se encuentran en la región. El trabajo consistió en la ubicación de los nueve municipios que conforman la Región Calentana y sus respectivas localidades, enseguida se colectaron artrópodos de manera aleatoria en cada municipio y sus respectivas localidades. Los instrumentos que se utilizaron para la recolecta de especies fueron: red entomológica, frasco letal, y guantes de seguridad, los insectos colectados fueron trasladados al laboratorio de Zoología del Tecnológico de Ciudad Altamirano (ITCA). Se identificaron 212 morfoespecies asociadas a cinco comunidades.
vegetales. Este grado de riqueza es alto teniendo en cuenta que Amat & Quitiaquez (1998) registraron 50 especies en la región Tierra caliente de Guerrero. La diferencia entre estos dos valores responde casi que exclusivamente a las diferentes intensidades de muestreo, ya que en el presente estudio los muestreos se cumplieron en un período de 250 días. Las morfoespecies encontradas y su representación según ordenes, pertenecen a Diptera (62.3%), Hymenoptera (16.5%), Coleoptera (6.1%), Heteroptera (5.7%), Lepidoptera (1.4%), Odonata (0.9%) y Araneae (7.1%); Diptera con 132 morfoespecies es el grupo que más contribuye a la riqueza global. El predominio observado en la riqueza de este grupo concuerda con lo señalado por Amat & Quitiaquez, (1998); quienes registraron que el 45% de todas las especies pertenecen a Diptera en la Región Calentana, Amat & Blanco (2003) encontraron el mismo patrón en los nueve municipios de la región, encontrando que alrededor del 57% de las especies totales son de Diptera en esta región calentana. La alta riqueza de insectos, especialmente de dípteros, en estos ambientes es promovida por la abundancia de materia orgánica, principalmente en forma de detritus. Se ha comprobado que un incremento del 50% en la riqueza promedio puede producirse con la introducción de materia orgánica a través de basuras y desechos (Amat & Quitiaquez 1998). Araneae presentó quince morfoespecies (7% de la riqueza global) y es el tercer grupo en riqueza; luego Heteroptera con trece (6%) y Coleoptera con doce (6%). Lepidoptera y Odonata. El segundo orden en riqueza es Hymenoptera, con 35 morfoespecies (17%); en el estudio de Amat & Blanco (2003), se encontró que Araneae y Coleoptera poseían la mayor riqueza de especies después de Diptera. Las familias. Se reconocieron 48 familias de Arthropoda: 23 pertenecientes a Diptera, siete a Hymenoptera, seis a Heteroptera, seis a Araneae, cinco a Coleoptera y una a Odonata. Entre los dípteros, las familias con mayor número de morfoespecies fueron Dolichopodidae con 17, Muscidae con 17, Ephydridae con quince, Sciaridae con once, Tipulidae con nueve, Chironomidae con ocho y Syrphidae y Chloropidae con siete. En Hymenoptera sobresalieron en riqueza las familias Braconidae, Eulophidae e Ichneumonidae con trece, ocho y seis morfoespecies, respectivamente; mientras
que en Coleoptera, Chrysomelidae con cinco morfoespecies y en Araneae la familia Araneidae presentó cuatro morfoespecies. Se registraron representantes de Ephydridae, Sepsidae, Pipunculidae, Sarcophagidae, Scatopsidae, Tephritidae y Sciomyzidae, pertenecientes a Diptera; Saldidae de Heteroptera; Hydrophilidae de Coleoptera; y Eulophidae, Pteromalidae, Mymaridae, Encyrtidae y Scelionidae de Hymenoptera. El 22 % de todas las morfoespecies encontradas se concentran en las familias: Ephydridae, Muscidae, Drosophilidae, Sarcophagidae, Sepsidae, Chloropidae, Agromyzidae, Sciomyzidae y Otitidae. Estos grupos de Diptera aparecen con una alta frecuencia en la Región Tierra Caliente de Guerrero (Keiper et al. 2002). El grado de cobertura vegetal puede afectar la composición y abundancia de algunos taxones y por lo tanto, influir en las distribuciones de los grupos tróficos (De Szalay & Resh 2000). Los cambios en la composición vegetal por otro lado, pueden afectar la abundancia en cada nivel trófico (Ferguson, 2001), mientras que la estructura de la vegetación, influenciada tanto por la productividad como por la diversidad vegetal, puede ser muy importante en determinar la diversidad y abundancia de artrópodos en diferentes niveles tróficos (Lawton, 1983). Kearns, 2001; Proctor et al. (1996) afirman que las especies de Muscidae son visitantes florales ocasionales o regulares, pero no especializados como Syrphidae, ya que presentan adaptaciones especiales, en el número de cerdas del aparato bucal y en las dimensiones de la proboscis, que les permite alimentarse de néctar, polen o de ambos. Los dípteros son el grupo más importante en riqueza y abundancia en insectos antófilos en la Región Calentana, especialmente las familias Muscidae y Syrphidae, por lo cual podrían ser importantes en la reproducción de varias familias de plantas y como insectos antófilos dominantes en los síndromes de polinización generalistas, e incluso en la fecundación de algunas familias de plantas de polinización preferentemente anémofila como las Poaceae. Varias familias de este orden, especialmente Ephydridae, Muscidae y Chironomidae, presentan un alto predominio y éxito ecológico, lo cual se evidencia por su alta riqueza, abundancia y biomasa. Los dípteros también presentan una riqueza trófica, lo que significa una alta adecuación del grupo para la explotación de los recursos. Los patrones de dispersión o movilidad, las abundancias poblacionales entre las
especies de hábitos generalistas y especialistas y la riqueza de especies influyen en los patrones de distribución de las familias de artrópodos entre las comunidades de vegetación en los nueve municipios de la Región Calentana.

Literatura citada

DESARROLLO DE LARVAS DE *Hermetia illucens* (DIPTERA STRATIOMYIDAE) ALIMENTADAS CON DESECHOS MUNICIPALES.

Fernando Ruiz-Ortiz¹, José Abimael Campos-Ruiz¹, Rafael Pérez-Pacheco¹, Carlos Granados-Echegoyen²*, Juan Carlos Camacho-Chab², Benjamín Ortega-Morales²

¹Programa de Maestría en Ciencias en Conservación y Aprovechamiento de Recursos Naturales. CIIDIR-IPN-Oaxaca, Calle Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, México.

²Academia de Protección y Producción vegetal, CIIDIR-IPN-Oaxaca, Calle Hornos 1003, Santa Cruz Xoxocotlán, Oaxaca, México.

*Autor de correspondencia: correo granados.echegoyen@yahoo.com

A nivel mundial la generación de residuos representa una creciente problemática, en el año 2012 se estimó una generación de 1.2 kg/día per cápita y se estima que para el año 2025 haya un incremento de entre 38 y 67% (Hoornweg y Bhada-Tata, 2012). En México la cantidad de residuos generados per cápita alcanzó los 1.04 kg/día de los que 52.4 % son de origen orgánico (SEMARNAT, 2012).

En la ciudad de Oaxaca el sistema de gestión de residuos vierte los desechos en espacios no controlados (SEMARNAT, 2012) de modo que no existe un manejo adecuado, una opción es aprovechar los desechos orgánicos como sustrato en alimentación de insectos (Salomone *et al.*, 2015). Las larvas de *Hermetia illucens* (Diptera: Stratiomyidae) procesan una gran variedad de material orgánico (Newton *et al.*, 2005) y es un candidato ideal para alimentación de peces (Magalhães *et al.*, 2017), el trabajo tuvo como objetivo evaluar el desarrollo larval en distintas dietas de desechos municipales.

El experimento se llevó a cabo en las instalaciones del laboratorio de entomología aplicada de la Universidad Autónoma Benito Juárez de Oaxaca en un cuarto de concreto de 4x3x3m acondicionado con sistema de iluminación artificial y ventilación para controlar la humedad (50 ± 10 %) y temperatura (27± 2°C).
Establecimiento de la colonia de moscas. Las moscas fueron proporcionadas por el Laboratorio de Entomología Aplicada de la UABJO, se mantuvieron dentro de una jaula entomológica de 1x0.8x0.8 m donde se les proporcionó agua por medio de un algodón humedecido.

Determinación de dietas. De acuerdo a los principales residuos orgánicos generados en la ciudad de Oaxaca de Juárez se establecieron tres dietas: desechos de pescado crudo del mercado Benito Juárez de Oaxaca, desechos de restaurantes del mercado 20 de Noviembre, desechos frutales de puestos ambulantes del centro histórico de la ciudad de Oaxaca de Juárez.

Obtención de huevos. En un recipiente plástico de 20 cm de diámetro de base, 25 cm de diámetro de boca y 15 cm de altura se preparó una mezcla de 500g de alimento de gallina de postura con 800 ml de agua, se cortaron cinco cartones corrugados de 5x50cm y se colocaron enrollados sobre la mezcla de alimento de gallina preparada. Posteriormente se introdujo dentro de la jaula de H. illucens para incitar a la oviposición en los orificios de los cartones corrugados. Se hicieron revisiones cada 12 horas, una vez que hubo huevecillos se retiró el recipiente con la mezcla y los cartoncillos para esperar la eclosión de los mismos. Cuatro días después de la eclosión se colocaron en lotes de 150 larvas por recipiente plástico (22x13x7cm) con 40g de la dieta respectiva, se realizaron tres replicas por tratamiento, como control se utilizó una mezcla de alimento de gallina ponedora con agua.

Desarrollo larval. Los métodos utilizados se adaptaron de Harnden y Tomberlin (2016), las observaciones se hicieron diariamente para determinar si las larvas necesitaban ser alimentadas. Se proporcionaron dietas asignadas en alícuotas de 40 g, según fue necesario. El primer muestreo se realizó 48 hrs después de incorporar las larvas en las dietas y posteriormente cada 24 hrs, durante cada observación se muestrearon de manera aleatoria 10 larvas de cada repetición y se devolvieron a su respectivo recipiente, la longitud fue medida con un Calibrador Vernier (Modelo: CVQ1315) y el peso se registró con una balanza electrónica (scout...
pro SPU 202; Ohaus Corporation, Pine Brook, NJ), los muestreos se realizaron hasta observar prepupas, posteriormente las pupas se transfirieron a recipientes plásticos de capacidad de 1L con aserrín en su interior.

El tiempo para completar el desarrollo larval de acuerdo al tratamiento fue el siguiente: En el tratamiento testigo el tiempo de huevo a larva fue de 16 días, en desechos de pescado de 20 días, en desechos de restaurantes 24 días, en desechos frutales 26 días.

Cuadro1. Medias finales de larvas de *H. illucens* en desechos de restaurantes (DR), desechos de fruta (DF), desechos de pescado (DP) y tratamiento testigo (T).

<table>
<thead>
<tr>
<th></th>
<th>DR</th>
<th>DF</th>
<th>DP</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud (mm)</td>
<td>23.77</td>
<td>19.73</td>
<td>20.56</td>
<td>23.19</td>
</tr>
<tr>
<td>Peso (mg)</td>
<td>262</td>
<td>175</td>
<td>214</td>
<td>268</td>
</tr>
</tbody>
</table>

El peso larval depende directamente de la cantidad y el tipo de alimento suministrado (*Diener et al.*, 2009), las longitudes finales de las larvas obtenidas en éste experimento comparadas con las obtenidas por *Nguyen et al.* (2013) presentan las siguientes diferencias: desechos de restaurantes es mayor en 12.49 %, desechos de fruta es mayor en 5.22%, desechos de pescado es mayor en 7.58 % y el tratamiento testigo es 11.59% mayor. El peso final obtenido respecto a *Nguyen et al.* (2013) en desechos de restaurantes es 33.88% mayor, en desechos de fruta es mayor en 29.53%, en desechos de pescado es mayor en 33.22% y por último el tratamiento testigo es mayor en 31.22%.

Éste trabajo es parte de una tesis de maestría, actualmente se están realizando análisis nutrimetales a las larvas de *H. illucens* que posteriormente se utilizarán en pruebas de palatabilidad en alevines de tilapia del Nilo (*Oreochromis niloticus*).
Literatura citada

CARTELES

EVALUACIÓN DEL INSECTICIDA KADABRA PARA EL CONTROL DE TERMITAS (*Heterotermes* spp) (ISOPTERA: RHINOTERMITIDAE) EN EL CULTIVO DE CAÑA DE AZÚCAR.

Cid Aguilar-Carpio¹*, Adriana Pérez-Ramírez¹, A. Jesús Gonzaga-Segura¹ y Carlos A. Ramos-Barreto²

²Ingeniería Industrial S. A. de C. V., Carretera a Tecualtitan, Km 0.676, San Miguel Zapotitlán. CP. 45977. Poncitlán, Jalisco, México.

*Autor de correspondencia: correo cid.aguilar@idagro.com.mx

En México el daño de las termitas al cultivo de la caña de azúcar ha tenido poca consideración, debido a sus hábitos subterráneos y por la dificultad de identificar su daño; sin embargo, se ha registrado su presencia en los ingenios de San Cristóbal, Tres Valles y Cuatotolapan en Veracruz (Rivera, 2008). La familia Rhinotermitidae (Isoptera) son termitas que nidifican bajo tierra excavando cámaras y túneles en relación con raíces próximas, troncos y piezas de madera (Pantaleón, 2012). Los reproductores son el rey y la reina su función específica es la reproducción de la colonia. Los obreros son ninfas y adultos estériles, ciegos y sordos, pero con alta capacidad de detectar vibraciones. Se encargan de la búsqueda de alimentos (forrajeo) para toda la colonia, por lo que son los que ocasionan el daño en el cultivo (Rivera, 2008). Los daños ocurren inicialmente en las estacas o semillas, lo que ocasiona fallas en la germinación, con la necesidad de resembrar. Después del corte o cosecha se observa el daño en los troncones o entrenudos basales de la zafra anterior, causando mortalidad en los brotes y despoblación de cepas en los cortes sucesivos (Sermeño-Chicas *et al.,* 2013). Por lo cual el objetivo del estudio fue evaluar la efectividad del insecticida KADABRA para el control de termitas en el cultivo de caña de azúcar.
El presente estudio se estableció en un cultivo de caña de azúcar en el campo conocido como "Los carriles" en la localidad de Comején, municipio de Acayucan, en el estado de Veracruz, la ubicación exacta es: Longitud 94°54′0.04″ O, Latitud 18°2′53.00″ N y una altitud 105 m. Para este estudio se utilizaron seis tratamientos: KADABRA (Fipronil + Bifentrina) a dosis de 300, 350, 400 y 450 mL ha⁻¹, el insecticida Regent 4SC (Fipronil) a dosis de 400 mL ha⁻¹ y un testigo absoluto. La aplicación se realizó al fondo del surco al momento de la siembra, utilizando un volumen de aspersión de 400 a 600 L ha⁻¹ de agua. El estudio se estableció en un diseño experimental de bloques completamente al azar, con cuatro repeticiones. La unidad experimental se formó de 4 surcos de 4 m de largo y 1.4 m de ancho. Para la evaluación, se tomaron tres muestras de suelo que se colectaron en bolsas de plástico, posteriormente las muestras se revisaron minuciosamente para contabilizar el número promedio de ninfas y adultos de termitas por muestra. El tamaño de muestra fue de un cuadrante de 30 cm de largo x 30 de ancho y 30 cm de profundidad. Los cuadrantes fueron tomados al azar sobre los surcos de la parcela útil de cada tratamiento. La población inicial se determinó mediante un muestreo previo, posteriormente se muestreó a los 30, 60 y 90 días después de la aplicación. A los datos colectados, se les realizó un análisis de varianza con el programa estadístico del SAS y la separación de medias con la prueba LSMeans.

En el muestreo previo, se observó que las poblaciones de ninfas no mostraron diferencias estadísticas significativas entre tratamientos, la prueba de LSMeans los agrupó con la misma letra (A), por lo que posiblemente la plaga estaba presente en toda la parcela experimental con el mismo grado de infestación. En general todos los tratamientos con insecticida presentaron poblaciones bajas de ninfas, los cuales fueron significativos respecto al testigo absoluto, donde se presentó el mayor número de ninfas. Es importante señalar que, a los 90 días de haber iniciado el ensayo, los tratamientos de KADABRA a dosis de 400, 450 mL ha⁻¹ y Regent 4SC (400 mL ha⁻¹) fueron los que reportaron el menor número de ninfas, por lograr el mayor control de las poblaciones, desde el primer muestreo se observó que los productos aplicados tuvieron un efecto positivo sobre el control de ninfas. Cabe
señalar que, durante todo el desarrollo del estudio, el tratamiento con Regent 4SC mantuvo las poblaciones con valores menores a 0.5 ninfas por cuadrante, este efecto se puede atribuir a la alta concentración de Fipronil, lo que posiblemente presentó mayor residualidad en comparación con la mezcla (Figura 1).

![Figura 1. Efecto de los insecticidas sobre ninfas de termitas en el cultivo de caña de azúcar. Las letras indican la separación de medias LSMeans de los rangos obtenidos de la prueba de Friedman.](image)

En el muestreo previo, se observó que los datos obtenidos presentaron un promedio de 0.2 adultos vivos por tratamiento, estos datos no mostraron diferencias significativas entre tratamientos, debido a que la prueba de LSMeans los agrupo con la misma letra (A). Cabe señalar que los tratamientos con KADABRA a dosis de 400 y 450 mL ha\(^{-1}\) reportaron una nula población de adultos, respectivamente. En general se observó un aumento en el número de adultos en los tratamientos con KADABRA y el testigo absoluto, este último duplicando su población con respecto al muestreo anterior. El tratamiento de KADABRA a dosis de 450 mL ha\(^{-1}\) y Regent 4SC (400 mL ha\(^{-1}\)) presentaron el mejor control, por tener el menor número de adultos (0.8) de termes por cuadrante. KADABRA por presentar dos modos de acción, generó un control en el número de ninfas similar a Regent. Por lo que KADABRA puede ser una alternativa al uso excesivo de Fipronil, por presentar una
concentración menor en comparación a Regent 4SC. A la larga el uso de Fipronil en altas concentraciones posiblemente pueda ocasionar resistencia. En el testigo absoluto la población de termitas seguía aumentando (42.3 adultos), mientras que todos los tratamientos con insecticida seguían presentando las menores poblaciones de adultos vivos, los cuales presentaron diferencias significativas, respecto al testigo absoluto.

Figura 2. Efecto de los insecticidas sobre adultos de termitas en el cultivo de caña de azúcar. Las letras indican la separación de medias LSMeans de los rangos obtenidos de la prueba de Friedman.

Regent 4SC presentó el mayor control sobre el número de ninfas y adultos de termitas, sin embargo, KADABRA a dosis de 350, 400 y 450 mL ha\(^{-1}\), lograron reducir de manera significativa el número de ninfas y adultos de termitas en el cultivo de caña de azúcar, durante 90 días.

Literatura citada

**RELACIÓN ENTRE EL TIEMPO DE ADQUISICIÓN Y LA CONCENTRACIÓN DEL VIRUS DE LA LEPROSIS (CiLV-C) EN ADULTOS DE *Brevipalpus yothersi*.

Renata Rodríguez-Ramírez¹*, Ma. Teresa Santillán-Galicia¹, Laura D. Ortega-Arenas¹, Ariel W. Guzmán-Franco¹, Saúl Sánchez Soto² y Pedro L. Robles-García.

¹Colegio de Postgraduados, Campus Montecillo. 56230. Km 36.5, Carretera México-Texcoco, Montecillo, Estado de México. ²Colegio de Postgraduados, Campus Tabasco. 86500. Periférico S/N, Heroica Cárdenas, Tabasco. ³Campañas de Prioridad Nacional, Dirección General de Sanidad Vegetal, Ciudad de México.

*Autor de correspondencia: correo rodriguez.renata@colpos.mx

ANTECEDENTES

La leprosis de los cítricos desde su detección en México en el 2004, sólo se había detectado en cítricos dulces, en cuatro estados del sureste del país. Sin embargo, en los últimos años, la enfermedad causada por el virus de la leprosis (CiLV-C), se ha dispersado a otras regiones cítricolas y detectado en otras especies de cítricos, lo que representa un problema económicamente importante. Entre las estrategias de manejo de esta enfermedad está en reducir las poblaciones del ácaro vector *Brevipalpus yothersi*. Sin embargo, aún se desconoce si este ácaro puede transmitir este virus en todas las especies de cítricos, donde la enfermedad se ha reportados. Por lo anterior, para determinar la capacidad de *B. yothersi* para transmitir esta enfermedad a diversas especies de cítricos, se requiere conocer si existe una relación entre la cantidad de virus que *B. yothersi* puede adquirir al estar expuesto a una fuente con el virus en diferentes lapsos de tiempo. Esto permitirá apoyar el
planteamiento de estrategias de vigilancia y manejo en el cultivo de cítricos de especies dulces y agrias; así como realizar análisis de riesgos epidémicos a nivel estatal y/o regional.

JUSTIFICACIÓN
Actualmente, la enfermedad de la leprosis se ha detectado en varios estados de la República Mexicana, tanto en especies dulces como agrios. De igual manera, se ha confirmado la presencia de *Brevipalpus yothersi* en las regiones citrícolas, el cual es el principal transmisor y diseminador del virus CiLV-C. Por lo anterior, es importante determinar la capacidad que tiene esta especie de ácaro para transmitir el virus de la leprosis a diferentes especies de cítricos; así como estimar la concentración del CiLV-C en *B. yothersi* y en la planta (carga de inóculo) para establecer la relación que puede existir entre ambas variables, con la finalidad de plantear estrategias de vigilancia y manejo en las diferentes especies de cítricos; así como evitar la formación de focos de infestación en las regiones importantes de cítricos.

METODOLOGÍA

Estimación de la concentración de CiLV-C en hembras de *B. yothersi* *alimentadas durante diferentes periodos de tiempo sobre lesiones de leprosis*

Para este experimento, se inició con el establecimiento de una colonia de *B. yothersi* de acuerdo a la metodología descrita por Salinas-Vargas *et al.* (2016). De una huerta de naranja dulce con presencia de leprosis del municipio de Cárdenas, Tabasco, se seleccionaron hojas con síntomas de la enfermedad. Este material fue trasladado a las instalaciones del campus Montecillo del Colegio de Postgraduados. Para confirmar la presencia del CiLV-C, de algunas muestras se realizó la extracción de RNA, así como la RT-PCR correspondiente. Se elaboraron arenas con agar-agua al 2% usando hojas de naranja dulce con y sin lesiones de leprosis. Se formaron grupos de 100 individuos de hembras adultas. Previo a colocar los ácaros en las arenas, se pusieron en ayuno por 4 horas. Transcurrido el ayuno, se transfirieron los ácaros a las arenas con la finalidad de que se alimentarán del
material vegetal. Los tiempos fueron 1, 12, 24, 36 y 48 horas. Al término de cada tiempo de alimentación, de cada grupo de ácaros se tomaron 10 individuos, los cuales fueron colocados en tubos para PCR y almacenados a -20°C. Concluido el último tiempo (48 horas), el material vegetal con y sin leprosis, fue colocado en tubos Eppendorf de 1.5 µl con 20 µl de RNA later® (QIAGEN) para su conservación. Dicho material fue almacenado a -20°C. De las muestras de ácaros almacenados por cada tiempo, se realizó la extracción de RNA. Asimismo, se realizó el RT-PCR para confirmar la presencia del virus CiLV-C. De igual manera, se procedió con el material vegetal. Se determinará la concentración del virus de cada extracción de ácaros mediante PCR en tiempo real o cuantitativo, siguiendo la metodología propuesta por Choudhary et al. (2015). El experimento se realizó bajo un diseño de bloques al azar, donde cada arena será la unidad experimental. Se realizaron cinco repeticiones. La cantidad de virus presente en cada grupo de ácaros de los diferentes tratamientos, se comparará mediante ANOVA, una vez confirmada la distribución normal de los datos. Todos los análisis se realizarán utilizando el paquete estadístico GenStat v 8.0.

RESULTADOS

Los resultados que se tienen hasta el momento, indican que las hembras de B. yothersi, si pueden adquirir el virus CiLV-C al alimentarse de una fuente infectada; sin embargo, resultados preliminares de reacciones de PCR de punto final, muestran que no existe una relación evidente entre el tiempo de adquisición y la concentración del virus. Estos resultados están en proceso de confirmarse mediante reacciones de PCR cuantitativo.

DISCUSIÓN
En caso de confirmar la no relación entre tiempo de adquisición del virus y su concentración en el ácaro, es probable que otros factores, además del tiempo de adquisición estén jugando un papel importante en la relación virus-ácaro. Es muy probable que el comportamiento del ácaro se modifique al ser colocado en las áreas infectadas, ya que, a pesar de un previo ayuno, las hembras de B. yothersi, cambien sus hábitos alimenticios utilizando diferentes tiempos para la exploración y/o reconocimiento de lugares de alimentación apropiadas. Una vez que se tengan los resultados del PCR cuantitativo, se podrán dar conclusiones más certeras.

EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (Daphne gnidium + Ruta chalepensis + Piper auritum) PARA EL CONTROL DE Bemisia tabaci (HOMOPTERA: ALEYRODIDAE) EN FRESA (Fragaria x ananassa).

Pedro Posos-Ponce¹, Iris Viviana Zepeda-Rivera² Jose Carlos Beas-Zarate², Omar Alejandro Posos-Parra³, Benito Monroy-Reyes¹, Gustavo Enciso-Cabral¹

*Autor de correspondencia: correo ppozos@prodigy.net.mx

¹Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias. KM. 15.6 Carr. Guadalajara-Nogales, Las Agujas, Municipio de Zapopan, Jalisco. C.P 41100. ². Estudiante de la Carrera de Agronomía¹Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias. ³. Estudiante de la Carrera de Ingeniero en Biotecnología ITESM campus Guadalajara.

Las plagas de mayor impacto a la que se enfrenta el cultivo de fresa es la Araña Roja y la Mosca Blanca (Bemisia tabaci G.) (Homoptera: Aleyrodidae). En el caso de la Mosca Blanca las partes jóvenes de la planta son colonizadas por los adultos, realizando las puestas en el envés de las hojas, de estas emergen las primeras larvas, que son móviles. Tras fijarse en la planta pasan por tres estados larvarios y uno de pupa, este último característico de cada especie produciendo manchas amarillentas en las hojas, pudrición de bayas y muerte de la planta (De Morales, 2012; Posos, 2006). Para el control de estas plagas se utilizan insecticidas inorgánicos, que en la mayoría de las ocasiones producen efectos nocivos al nicho
ecológico, es por esta razón que la tendencia actual es utilizar insecticidas orgánicos que sean amigables con el entorno (Posos, 2006). Por lo anterior se justifica la realización de estudios que utilicen este tipo de insecticidas, para tal efecto se plantearon los siguientes objetivos: evaluar la efectividad biológica de Combat Plus en aplicación foliar para el control de Mosca Blanca (*B. tabaci*) en el cultivo de fresa, determinar las dosis óptimas del producto Combat Plus y evaluar la fitotoxicidad al cultivo en caso de existir. El experimento se estableció el día 06 de noviembre 2014, en el municipio de Zamora, Michoacán, en el predio denominado La Lenteja (20°00'36.2"N, 102°13'43.2"W). En el cultivo de Fresa (*Fragaria x ananassa*) variedad Festival que se encontraba en etapa de floración-fructificación. La plaga objetivo en el estudio fueron adultos y ninfas de Mosca Blanca (*Bemisia tabaci*). La unidad experimental quedó constituida por tres surcos con una separación de 1.0 m por 7.0 m de largo para así tener 21 m² por unidad experimental y 84 m² por tratamiento y 420 m² por el total del experimento. Se empleó un diseño de bloques completos al azar de acuerdo con Reyes (1985), con cuatro repeticiones y cinco tratamientos, incluyendo un testigo sin aplicar. Se registró el número total de individuos de adultos y ninfas de Mosca Blanca en cada muestreo, y a estos resultados se les aplicó análisis de varianza y prueba de separación de medias de Tukey al 5% de significancia, así como las pruebas de homogeneidad de Varianzas de Bartlett, utilizando el Software estadístico ARM, (2002). Se realizaron dos aplicaciones y tres muestreos con intervalos de 7 días. La población total de individuos adulto fue determinada a través de muestreos en 10 hojas tomadas al azar del estrato medio e inferior de las plantas. Mientras que para la población total de individuos ninfas se recolectaron 10 hojas tomadas al azar de la parcela útil, principalmente del estrato medio e inferior de las plantas de cada unidad experimental; las cuales se colocaron en una bolsa de papel de estraza y se trasladaron al laboratorio para ser cuantificadas empleando un microscopio estereoscópico. El porcentaje de control fue obtenido empleando la fórmula de Abbott (1929) y se evaluó cualquier sintomatología anormal de las plantas con respecto a las observadas en el testigo siguiendo los valores de la escala EWRS.
En el Cuadro 1 se muestra el comportamiento de los tratamientos para el control de adultos de Mosca Blanca (*Bemisia tabaci*). El muestreo previo reveló que la población de Mosca Blanca fue uniforme por lo que la distribución de los tratamientos estadísticamente fue adecuada, ya que no hubo diferencia significativa entre los tratamientos. Como se pudo apreciar 7 días después de la segunda aplicación, es que se tiene un control muy consistente de la plaga en todos los tratamientos; sin embargo, no hay diferencias significativas entre los tratamientos, por lo que se considera que todos los tratamientos son iguales, aunque existen pequeñas diferencias numéricas en los controles. Es importante aclarar que, respecto al testigo absoluto, los resultados coinciden con Álvarez *et al.*, (2012), quienes evaluaron producto de origen natural para el control de dicha plaga. El tratamiento con mayor porcentaje de control fue el Tratamiento 3 Combat Plus (en dosis de 8.0 mL/L agua) con un control de 90%, mientras que el Tratamiento 1 Combat Plus (en dosis de 4.0 mL/L agua) obtuvo el menor porcentaje de control con 85%. Es importante notar que, a pesar de dicha diferencia de porcentajes, los tratamientos en general tuvieron controles por arriba del 80%.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Dosis mL /ha mL/L de agua</th>
<th>Muestreo Previo</th>
<th>Muestreo 7 DDA 1ª. Aplicación</th>
<th>Muestreo 7 DDA 2ª. Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Combat Plus</td>
<td>4.0 mL/L agua</td>
<td>34.50* a</td>
<td>10.75/84.64** b</td>
<td>14.75/85.25 b</td>
</tr>
<tr>
<td>2. Combat Plus</td>
<td>6.0 mL/L agua</td>
<td>41.25 a</td>
<td>11.25/83.93 b</td>
<td>12.50/87.50 b</td>
</tr>
<tr>
<td>3. Combat Plus</td>
<td>8.0 mL/L agua</td>
<td>44.50 a</td>
<td>10.00/85.71 b</td>
<td>9.50/90.50 b</td>
</tr>
<tr>
<td>4. Naled 90</td>
<td>200.0 mL/100 L de agua</td>
<td>39.50 a</td>
<td>11.00/84.29 b</td>
<td>12.75/87.25 b</td>
</tr>
<tr>
<td>5. Testigo Absoluto</td>
<td>-</td>
<td>31.0 a</td>
<td>70.00/0.0 a</td>
<td>100.0/0.0 a</td>
</tr>
</tbody>
</table>

*Población de adultos de Mosca Blanca de la sumatoria de 10 muestras por repetición.

**Porcentaje de Eficacia Biológica

En el Cuadro 2, se presenta el comportamiento de los tratamientos para el control de ninfas de Mosca Blanca, aquí se observa que en el muestreo previo la población de inmaduros de Mosca Blanca es uniforme por lo que la distribución de los tratamientos estadísticamente fue adecuada, ya que no hay diferencia significativa.
entre los tratamientos. El comportamiento a los 7 días después de la segunda aplicación muestra un control consistente de ninjas en todos los tratamientos; sin embargo, no hay diferencias significativas entre los tratamientos, además se observa que existen pequeñas diferencias numéricas entre los tratamientos, por lo que se considera que todos los tratamientos son iguales. Los tratamientos con mayor porcentaje de control en ninjas de Mosca Blanca fueron el Tratamiento 3 Combat Plus y el Tratamiento 4 Naled 90, con porcentajes de control del 92-93%, mientras que los Tratamientos 1 y 2, de Combat Plus ambos, mostraron controles del 87% en ambos casos. Dichos resultados coinciden con los reportado por Cubillo et al. (1994), quienes evaluaron varias sustancias de origen botánico para medir el control de *B. tabaci* en varios cultivos. Estadísticamente entre los tratamientos no hay diferencias significativas y no se presentó fitotoxicidad en el cultivo durante el desarrollo del estudio.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Dosis mL /ha mL/L de agua</th>
<th>Muestreo Previo</th>
<th>Muestreo 7 DDA 1ª. Aplicación</th>
<th>Muestreo 7 DDA 2ª. Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Combat Plus</td>
<td>4.0 mL/L agua</td>
<td>53.25* a</td>
<td>12.75/84.55** b</td>
<td>14.00/87.33 b</td>
</tr>
<tr>
<td>2. Combat Plus</td>
<td>6.0 mL/L agua</td>
<td>53.25 a</td>
<td>11.50/86.06 b</td>
<td>14.25/87.61 b</td>
</tr>
<tr>
<td>3. Combat Plus</td>
<td>8.0 mL/L agua</td>
<td>45.50 a</td>
<td>11.25/86.36 b</td>
<td>8.50/92.61 b</td>
</tr>
<tr>
<td>4. Naled 90</td>
<td>200.0 mL/100 L de agua</td>
<td>64.50 a</td>
<td>15.00/81.82 b</td>
<td>8.75/92.39 b</td>
</tr>
<tr>
<td>5. Testigo Absoluto</td>
<td>-</td>
<td>56.75 a</td>
<td>82.50/0.0 a</td>
<td>115.0/0.0 a</td>
</tr>
</tbody>
</table>

*Población de adultos de Mosca Blanca de la sumatoria de 10 muestras por repetición.
**Porcentaje de Eficacia Biológica

Derivado de los resultados que se obtuvieron en el presente estudio, se concluye lo siguiente: La densidad de población plaga fue suficiente para poner a prueba la efectividad de los Insecticidas evaluados como se aprecia en los cuadros anteriores. Ninguno de los tratamientos causó fitotoxicidad al cultivo. Se puede afirmar que el producto Combat Plus en dosis de 4.0, 6.0 y 8.0 ml de producto comercial/litro de...
agua, representa una nueva opción para el control de adultos de Mosca Blanca aplicado en el cultivo de Fresa.

Literatura citada

EFECTIVIDAD BIOLÓGICA DE COMBAT PLUS (*Daphne gnidium* + *Ruta chalepensis* + *Piper auritum*) PARA EL CONTROL DE *Bemisia tabaci* (HOMOPTERA: ALEYRODIDAE) EN TOMATE (*Solanum lycopersicum* L.).

Benito Monroy -Reyes¹, Lopez-Plascencia Jonathan Manuel², Iris Viviana-Zepeda Rivera², Omar Alejandro Posos-Parra¹, Enrique Pimienta-Barrios¹, José Gustavo Enciso-Cabral, Pedro Posos-Ponce¹

¹Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias. KM. 15.6 Carr. Guadalajara-Nogales, Las Agujas, Municipio de Zapopan, Jalisco. C.P 41100-

²Estudiante de la Carrera de Ingeniero Agrónomo en la Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias. KM. 15.6 Carr. Guadalajara-Nogales, Las Agujas, Municipio de Zapopan, Jalisco. C.P 41100

Autor de correspondencia: correo ppozos@prodigy.net.mx

El jitomate es originario de la América del Sur, de la región andina, particularmente de Perú, Ecuador, Bolivia y Chile. Sin embargo, su domesticación fue llevada a cabo en México. Una de sus plagas más comunes son: Mosca Blanca (Homoptera: Aleyrodidae), la cual se caracteriza por tener un ciclo de vida de metamorfosis incompleta pasando por huevo siendo este elíptico y asimétrico, con coloración amarillo-verdosa. Acaba en una prolongación llamada pedicelo, mediante la cual se fija a la hoja quedando en posición vertical. Mide alrededor de 0.2 mm de longitud por 0.1 mm de ancho. Posteriormente se convierte en pupa, pasando por varios estadios y finalmente en adulto. Su importancia reside en su capacidad de ser portador de geminivirus, situación que pone en riesgo la sanidad de los cultivos, y de manera indirecta, provee las condiciones para la propagación de fumagina, una patología que es desarrollada por un hongo saprófita en la superficie de los vegetales. El siguiente trabajo tuvo como objetivo evaluar una mezcla de diferentes extractos de plantas (Combat Plus) con el fin de determinar las dosis óptimas del producto comercial y evaluar la fitotoxicidad al cultivo (en caso de existir). El ensayo se estableció el 07 de noviembre de 2014, ubicado en la zona de San Gregorio,
Municipio de Pajacuarán, Michoacán, México (20°11’12” N, 102°32’0” O). La unidad experimental fue constituída por 3 surcos de 2 m de separación y 8 m de largo, para así tener 48 m² por unidad experimental y 192 m² por tratamiento y 960 m² por el total del experimento. Se utilizó un diseño de bloques completos al azar de acuerdo con Reyes (1985) con cuatro repeticiones y cinco tratamientos incluyendo un testigo sin aplicar. El experimento fue establecido en el cultivo de Tomate (*S. lycopersicum*) variedad Palomo, en etapa de floración-fructificación. El objeto en el estudio fue la contabilización total de adultos y ninfas de Mosca Blanca (*Bemisia tabaci*). Posteriormente se corrió un análisis de varianza y prueba de separación de medias de Tukey al 5% de significancia, así como las pruebas de homogeneidad de Varianzas de Bartlett, utilizando el Software estadístico ARM (2002). La aplicación se llevó a cabo utilizando el equipo de protección personal necesario y se empleó un equipo de CO₂, de dos boquillas de cono hueco S8. Se llevaron acabo dos aplicaciones en total con un intervalo de aplicaciones de 7 días entre ellas. Las poblaciones de adultos de Mosca Blanca se evaluaron contando el número total de individuos por hoja (en total diez hojas) tomadas al azar del estrato medio e inferior de la planta. En cada unidad experimental se siguió el mismo proceso. Con el fin de estimar las poblaciones de ninfas de Mosca Blanca se evaluó el número total de individuos de ninfas por hoja, en 10 hojas tomadas al azar de plantas diferentes del estrato medio e inferior de las plantas de cada unidad experimental. Se colocaron en una bolsa de papel de estraza y se trasladaron al laboratorio para ser cuantificadas las ninfas vivas con la ayuda de un microscopio estereoscópico. Posteriormente, se calculó el porcentaje de control empleando la fórmula de Abbott (1929) y con el fin de determinar si el producto ejerció algún efecto sobre el cultivo de tomate, se evaluó cualquier sintomatología anormal de las plantas con respecto a las observadas en el testigo siguiendo los valores de la escala EWRS. En el Cuadro 1 se observa el comportamiento de los tratamientos para el control de adultos de *B. tabaci*. El muestreo previo revela que la población de adultos de Mosca Blanca es uniforme, por lo que la distribución de los tratamientos estadísticamente fue adecuada, ya que no hay diferencia significativa entre ellos. Esta situación coincidió con los trabajos realizados por Iannacone, J., & Reyes, M. (2001), quienes
obtuvieron resultados similares cuando evaluaron rotenona y neem en mezcla. En dicho Cuadro se aprecian los resultados obtenidos 7 días después de la segunda aplicación, en donde se observa que en el control de adultos todos los tratamientos fueron consistentes. Estadísticamente no se presentaron diferencias significativas entre los tratamientos, por lo que todos los tratamientos son iguales. Con respecto al testigo absoluto, sí hubo diferencias significativas. El mayor control de adultos de Mosca Blanca fue el Tratamiento 1 el Combat Plus (en dosis de 4.0 mL/L de agua) con 83% de control, mientras que el menor control fue el Tratamiento 4 Engeo, (en dosis de 300 mL/Ha) con 79% de control. Estos resultados fueron similares a los obtenidos por Sabillón, A (2012), quién evaluó diferentes extractos botánicos para el control de Mosca Blanca en el cultivo de Tomate.

Cuadro 1. Porcentaje de Control y Prueba de Medias de Tukey al 5% de significancia para el control de adultos de Mosca Blanca en tomate en San Gregorio, Pajacuarán, Michoacán, 2014.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Dosis mL/ha mL/L de agua</th>
<th>Muestreo Previo</th>
<th>Muestreo 7 DDA 1ª. Aplicación</th>
<th>Muestreo 7 DDA 2ª. Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Combat Plus</td>
<td>4.0 mL/L agua</td>
<td>31.25* a</td>
<td>30.0/81.25** b</td>
<td>14.75/83.88 b</td>
</tr>
<tr>
<td>2. Combat Plus</td>
<td>6.0 mL/L agua</td>
<td>33.25 a</td>
<td>25.50/84.06 b</td>
<td>10.25/88.80 b</td>
</tr>
<tr>
<td>3. Combat Plus</td>
<td>8.0 mL/L agua</td>
<td>35.50 a</td>
<td>19.75/87.66 b</td>
<td>12.00/86.89 b</td>
</tr>
<tr>
<td>4. Engeo</td>
<td>300.0 mL/ha</td>
<td>36.25 a</td>
<td>14.00/91.25 b</td>
<td>18.50/79.78 b</td>
</tr>
<tr>
<td>5. Testigo</td>
<td>-</td>
<td>32.50 a</td>
<td>160.0/0.0 a</td>
<td>91.50/0.0 a</td>
</tr>
<tr>
<td></td>
<td>Absoluto</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Población de adultos de Mosca Blanca de la sumatoria de 10 muestras por repetición.

**Porcentaje de Eficacia Biológica.

El control de ninfas se muestra en el Cuadro 2. En el muestreo previo se encontró que la población de individuos inmaduros fue uniforme, por lo que la distribución de los tratamientos estadísticamente fue adecuada, ya que no hubo diferencias significativas entre los tratamientos. En éste se observa que a los 7 días después de la segunda aplicación, el control de ninfas por todos los tratamientos fue muy consistente. No hubo diferencias significativas entre los tratamientos, por lo que se considera que todos son iguales. No obstante, sí hubo diferencias significativas entre los tratamientos y el testigo absoluto. El mayor control sobre ninfas de Mosca Blanca fue observado en el Tratamiento 3 Combat Plus (en dosis de 8.0 mL/L de agua).
agua) con 82% de control, mientras que el más bajo fue el Tratamiento 1 (en dosis de 4.0 mL/L de agua) con 87% de control. Después de dos aplicaciones, la población de adultos y ninfas de Mosca Blanca bajó drásticamente, lo que demuestra la efectividad de los productos evaluados. Entre los tratamientos evaluados no hay diferencias significativas. No se presentó fitotoxicidad en el cultivo.

La presencia de adultos y ninfas durante el ensayo alcanzó su densidad máxima en el muestreo a los 7 días después de la primera aplicación con 160 individuos y 203 respectivamente de la sumatoria de 10 foliolos muestreados por repetición en el testigo absoluto. El producto Combat Plus en dosis de 4.0, 6.0 y 8.0 mL por litro de agua, representa una nueva opción para el control de adultos y ninfas de *B. tabaci* en el cultivo de Tomate. Se sugiere realizar dos aplicaciones en periodos de 7 días cuando se reporten las primeras poblaciones de adultos y ninfas de Mosca Blanca en el cultivo.

Cuadro 2. Porcentaje de Control y Prueba de Medias de Tukey al 5% de significancia para el control de ninfas de Mosca Blanca en tomate en San Gregorio, Pajacuarán, Michoacán, 2014.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Dosis mL /ha mL/L de agua</th>
<th>Muestreo Previo</th>
<th>Muestreo 7 DDA 1ª. Aplicación</th>
<th>Muestreo 7 DDA 2ª. Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Combat Plus</td>
<td>4.0 mL/L agua</td>
<td>147.75* a</td>
<td>38.25/81.16** b</td>
<td>11.75/87.33 b</td>
</tr>
<tr>
<td>2. Combat Plus</td>
<td>6.0 mL/L agua</td>
<td>163.50 a</td>
<td>29.50/85.47 b</td>
<td>8.25/91.11 b</td>
</tr>
<tr>
<td>3. Combat Plus</td>
<td>8.0 mL/L agua</td>
<td>156.25 a</td>
<td>23.00/88.67 b</td>
<td>7.75/91.64 b</td>
</tr>
<tr>
<td>4. Engeo</td>
<td>300.0 mL/ha</td>
<td>181.00 a</td>
<td>23.00/88.67 b</td>
<td>9.25/90.03 b</td>
</tr>
<tr>
<td>5. Testigo Absoluto</td>
<td>-</td>
<td>129.75 a</td>
<td>203.0/0.0 a</td>
<td>97.75/0.0 a</td>
</tr>
</tbody>
</table>

*Población de adultos de Mosca Blanca de la sumatoria de 10 muestras por repetición.

**Porcentaje de Eficacia Biológica.

Literatura citada

EFECTO INSECTICIDA DE POLVO DE RUDA *Ruta graveolens* (SAPINDALES: RUTACEAE) EN *Spodoptera frugiperda* (LEPIDOPTERA: NOCTUIDAE).

Agustín Hernández-Juárez¹,*, Edgar de Jesús Guzmán-UrIBE¹, &, Aideé González-Ruíz¹, &&, Luis Alberto Aguirre-Uribe¹, Melchor Cepeda-Siller¹ y Julio Cesar Chacón-Hernández²

¹Universidad Autónoma Agraria Antonio Narro, Departamento de Parasitología, Calzada Antonio Narro # 1923, C.P. 25315, Buenavista, Saltillo, Coahuila, México.

²Universidad Autónoma de Tamaulipas, Instituto de Ecología Aplicada, División del Golfo 356, Colonia Libertad, C.P. 87019, Cd. Victoria, Tamaulipas, México.

&Estudiante de Licenciatura, &Estudiante de Postgrado

Autor de correspondencia: correo chinoahj14@hotmail.com

El gusano cogollero *Spodoptera frugiperda* (J. E. Smith) (Lepidoptera: Noctuidae), es una de las plagas de mayor importancia económica en el cultivo del maíz *Zea mays* L. (Poales: Poaceae) (Sena et al., 2003; Nagoshi y Meagher, 2004); cuyas infestaciones y daños severos pueden ocasionar pérdidas en el rendimiento superiores al 30% (Herrera, 1979; García-Gutiérrez et al., 2012). El manejo de esta plaga, frecuentemente es con aplicación de insecticidas convencionales, resultando en el desarrollo de poblaciones tolerantes y resistentes a un amplio número de insecticidas de diferente grupo toxicológico (Yu, 1991; Morillo y Notz, 2001; Yu et al., 2003). Nuevos sistemas de manejo de plagas, basados en productos que reduzcan la dependencia de los agroquímicos y que mantenga la calidad de los alimentos son necesarios. El control a partir de plantas se presenta como una alternativa prometedora, ya que sintetizan una variedad de metabolitos secundarios con propiedades insecticidas, útiles para el manejo de plagas (Vázquez et al., 2007; Sosa y Tonn, 2008). La ruda *Ruta graveolens* L. (Sapindales: Rutaceae) es una especie con propiedades importantes en el área farmacológica para el desarrollo de medicamentos para el dolor, problemas oculares, reumatismo y dermatitis, y se ha demostrado que presenta características alelopáticas y actividades antibacterianas, antifúngicas e insecticidas (De Feo et al., 2002; Asgarpanah y Khoshkam, 2012; Reyes-Quintanar et al., 2014). El objetivo fue evaluar el efecto insecticida de polvo de *R. graveolens* sobre *S. frugiperda* en condición de laboratorio.
El estudio se llevó a cabo en el Departamento de Parasitología de la Universidad Autónoma Agraria Antonio Narro en Buenavista, Saltillo, Coahuila, México (25°21’13”N, 101°01’56”O, 1610 msnm). Se utilizó follaje de ruda y larvas de primer estadio de gusano cogollero de una línea de laboratorio, mantenida bajo condiciones controladas a 25 ± 5 °C, 55 ± 15 % humedad relativa y fotoperiodo 12:12 h luz: oscuridad. El follaje se deshidrato a temperatura ambiente y posteriormente en una estufa a 35 °C hasta que el peso del material fue constante (7 días), posteriormente el tejido vegetal se trituró en un molino eléctrico y el producto se filtró en un tamiz con malla número 325 (0.044 mm). El polvo de ruda se incorporó en dieta artificial después de que se enfriara a 40 °C y previo a la solidificación. En vasos #0A de 20 mL, se agregaron 10 mL de dieta artificial (12 g en peso) y en estos se colocaron los tratamientos correspondientes de acuerdo al peso de la dieta (%p/p), quedando de la siguiente manera: 0, 0.25, 0.50, 1.0, 2.0, 4.0 y 8.0 % del peso de la dieta con 0, 0.03, 0.06, 0.12, 0.24, 0.48 y 0.96 g de polvo respectivamente; posteriormente se colocaron larvas individuales de 48 horas de edad. Cada vaso se cerró con tapa #0A perforada con la punta de un alfiler, para permitir una mayor entrada y salida de gases. Se establecieron en total seis concentraciones y 15 repeticiones cada uno, además de un testigo sin la aplicación de polvo; bajo un diseño completamente al azar. La evaluación de la mortalidad y desarrollo de las fases del ciclo de vida de *S. frugiperda* se registró cada 24 horas, tomando como referencia el desarrollo del testigo, hasta la fase de adulto. Cada larva se consideró muerta, cuando no presentó respuesta al estímulo con un fino pincel, apéndices pegados al cuerpo y/o deshidratada y se consideró pupas muertas aquellas de las que no emergieron los adultos. El cambio de cada estadio larval se identificó con la exuvia de la cápsula cefálica. La mortalidad en el testigo fue corregida con la fórmula de Abbott (1925), con una mortalidad aceptada del 10%. Los datos de mortalidad se evaluaron con un análisis Probit para estimar el valor de la CL\(_{50}\), CL\(_{95}\) y el límite de confianza al 95% de significancia. Los datos de mortalidad se transformaron a raíz cuadrada de arcoseno y se sometieron a un análisis de varianza y comparación de medias de Tukey (\(p<0.05\)). En ambos análisis se utilizó el software estadístico SAS/STAT 9.0 (SAS, Institute 2002). Se registró el tiempo y porcentaje de larvas que alcanzaron los diferentes estadios sucesivos, larvas que alcanzaron la etapa pupal y pupas que alcanzaron la etapa de adulto. La aplicación de polvo de ruda presentó un efecto de control significativo (\(P<0.05\)) sobre el gusano cogollero en las diferentes concentraciones; a partir de 8 días de evaluación se tuvo una mortalidad de 84% en la concentración de 0.96 g (8%) y 90% a los 11 días (Cuadro 1).

Cuadro 1. Mortalidad de *Spodoptera frugiperda* por efecto de polvo de *R. graveolens* a diferentes días de evaluación.

<table>
<thead>
<tr>
<th>Concentración (g)</th>
<th>8 días</th>
<th>9 días</th>
<th>10 días</th>
<th>11 días</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>6.0 c</td>
<td>6.0 d</td>
<td>6.0 c</td>
<td>6.0 d</td>
</tr>
<tr>
<td>0.03</td>
<td>18.0 bc</td>
<td>24.0 cd</td>
<td>24.0 bc</td>
<td>30.0 bc</td>
</tr>
<tr>
<td>0.06</td>
<td>48.0 ab</td>
<td>48.0 bc</td>
<td>48.0 b</td>
<td>48.0 b</td>
</tr>
<tr>
<td>0.12</td>
<td>66.0 a</td>
<td>72.0 ab</td>
<td>78.0 a</td>
<td>90.0 a</td>
</tr>
<tr>
<td>0.24</td>
<td>66.0 a</td>
<td>72.0 ab</td>
<td>84.0 a</td>
<td>90.0 a</td>
</tr>
</tbody>
</table>
En todas las concentraciones evaluadas, *S. frugiperda* no se desarrolló más allá del segundo estadio larval, mientras que el testigo se desarrolló normalmente. Lo que varió entre concentraciones de ruda fue el porcentaje de larvas que pasaron al siguiente estadio y el tiempo de paso del primero al segundo estadio (Cuadro 2).

Cuadro 2. Desarrollo de *Spodoptera frugiperda* en presencia de diferentes concentraciones de polvo de *Ruta graveolens*.

<table>
<thead>
<tr>
<th>Concentración (g)</th>
<th>L1-L2</th>
<th>L2-L3</th>
<th>L3-L4</th>
<th>L4-L5</th>
<th>L5-L6</th>
<th>L6-P</th>
<th>P-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>%</td>
<td>horas</td>
<td>%</td>
<td>horas</td>
<td>%</td>
<td>horas</td>
<td>%</td>
<td>horas</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>horas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>93.3</td>
<td>72</td>
<td>93.3</td>
<td>48</td>
<td>93.3</td>
<td>48</td>
<td>93.3</td>
</tr>
<tr>
<td>0.03</td>
<td>73.3</td>
<td>240</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
</tr>
<tr>
<td>0.06</td>
<td>46.7</td>
<td>240</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
</tr>
<tr>
<td>0.12</td>
<td>40.0</td>
<td>168</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
</tr>
<tr>
<td>0.24</td>
<td>40</td>
<td>144</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
</tr>
<tr>
<td>0.48</td>
<td>26.7</td>
<td>192</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
</tr>
<tr>
<td>0.96</td>
<td>26.7</td>
<td>144</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
<td>Nm</td>
<td>0</td>
</tr>
</tbody>
</table>

L1, 2, 3, 4, 5, 6=Estadios larvales de *Spodoptera frugiperda*, P=Pupa, A=Adulto, %=Porcentaje de organismos que pasaron al siguiente estadio/fase, Nm=no mudo, horas=tiempo en que paso al siguiente estadio/fase.

Se presentó un efecto insecticida de la ruda sobre *S. frugiperda*, particularmente en las concentraciones altas, y previo a la muerte del insecto se observó una mayor frecuencia, fluidez (acuoso) y volumen de deposiciones (evacuaciones), en comparación al testigo, cuya heces eran duras y redondeadas. Este síntoma indica un efecto o alteración del sistema digestivo del insecto. Por otro lado, en las concentraciones bajas que permitieron mayor escape y sobrevivencia de *S. frugiperda*, se apreció un efecto de repelencia, alejándose estas del alimento; comportamiento que no permitió que las larvas se alimentaran continuamente, no obstante; al igual que las concentraciones altas también las larvas presentaron evacuaciones abundantes. Siguiendo el desarrollo de *S. frugiperda* hasta la etapa de adulto; las larvas que no murieron por efecto de la ruda, se atribuye su mortandad a un efecto de inanición por la repelencia sufrida, pues estas larvas continuaron vivas en el segundo estadio por un lapso de 19 días, con excepción de la concentración de 0.03g (0.25%) que se mantuvieron hasta la emergencia de las pupas en el testigo. La ruda es una planta con la que se han obtenido resultados...
prometedores para el control de *S. frugiperda*, (Knaak *et al.*, 2012) mediante extractos por maceración e infusión determinaron que la ruda interfiere en el desarrollo de *S. frugiperda* y Pedreira *et al.*, (2008) determinaron su actividad insecticida en la reducción de pupas por efecto del extracto acuoso.

Literatura Citada

EL ÁFIDO Greenidea psidii VAN DER GOOT 1916 (HEMIPTERA: APHIDIDAE) EN HUERTAS DE GUAYABO EN EL ESTADO DE ZACATECAS.

Victorio Martínez-Ortega¹, Julio Lozano-Gutiérrez², Martha Patricia España-Luna², Alfredo Lara-Herrera², J. Jesús Balleza-Cadengo²

2. Docente-Investigador de la Unidad Académica de Agronomía de la Universidad Autónoma de Zacatecas. Carr. Zacatecas-Guadalajara km 15, Cieneguillas, Zac

Autor de correspondencia: correo jlozano_75@yahoo.com.mx

En los últimos años en países como Venezuela, Costa Rica, Brasil y Argentina se tienen reportes de la presencia del pulgón Greenidea psidii Van Der Goot 1916, (Hemiptera: Aphididae). Este insecto es una especie de pulgón de origen asiático, que inicialmente se reportó en la India, Malaya, Java, Formosa, Japón y China. En México se tiene el primer reporte de la presencia de G. psidii en el estado de Guanajuato en árboles de guayabo en marzo de 2007 y en el mes de abril del mismo año se encontró cerca de Irapuato, Gto. El estado de Zacatecas ocupa el tercer lugar productor de guayaba con una superficie de 3,020 has y un volumen de producción de 49,336 ton, obteniendo el más alto rendimiento por hectárea a nivel nacional con 16.33 ton por ha. Los principales municipios productores de guayaba en ese estado son Jalpa, Apozol, Tabasco, Villanueva, Huanusco y Juchipila. Dentro de los principales factores que afectan la producción del guayabo en Zacatecas se tiene a las plagas como mosca de la guayaba Anastrepha striata Fabricius 1805, y el picudo Conotrachelus dimidiatus Champion 1904, sin contar con reportes de la presencia del pulgón de la guayaba G. psidii, por lo tanto el objetivo de la presente investigación fue determinar la presencia y ubicar las huertas de guayabo con
presencia de *G. psidii* en municipios de Villanueva, Tabasco, Huanusco, Jalpa y Apozol, Zacatecas. Durante el año 2016 se llevaron cabo 4 recorridos de muestreos en los meses de marzo, abril, septiembre y noviembre en huertas de guayabo en los municipios de Villanueva, Tabasco, Jalpa y Apozol. En cada huerta se trazó una línea recta transversal al huerto comprendiendo 25 árboles, en cada árbol se revisaron 20 brotes en la parte baja del árbol, distribuidos en cinco brotes por cada punto cardinal, otros 20 en la parte media de árbol y otros 20 en parte alta. Una vez que se localizó un árbol con presencia de *G. psidii* se caracterizó el sitio y se extendió el número de árboles muestreados en círculo hasta no tener presencia del insecto plaga. Los áfidos se depositaron en recipientes de plástico con alcohol al 70% y posteriormente se identificaron mediante las claves de Halbert (2004) y se depositaron en el insectario de la Unidad Académica de Agronomía de la Universidad Autónoma de Zacatecas.

Después de los recorridos de campo y sus respectivos muestreos se encontraron cinco huertas con presencia de *G. psidii* en tres municipios productores de guayaba (Cuadro 1), con diferentes poblaciones por árbol (Cuadro 2).

Cuadro 1. Huertas productoras de Guayaba con presencia de *Greenidea psidii*

<table>
<thead>
<tr>
<th>MUNICIPIO</th>
<th>PRODUCTOR</th>
<th>COORDENADAS</th>
<th>MUESTREO (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VILLANUEVA</td>
<td>JORGE MARTINEZ</td>
<td>22°02'37'' N; 102°52'10'' O</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>TABASCO</td>
<td>JESÚS RAMOS</td>
<td>22°01'01''N, 102°52'27'' O</td>
<td>1,3</td>
</tr>
<tr>
<td>TABASCO</td>
<td>JORGE RAMOS</td>
<td>22°02'12'' N, 102°51'58'' O</td>
<td>1,3,4</td>
</tr>
<tr>
<td>APOZOL</td>
<td>NICOLAS MERCADO</td>
<td>21°27'24'' N, 103°05'36'' O</td>
<td>4</td>
</tr>
<tr>
<td>APOZOL</td>
<td>ANDRÉS GARCÍA</td>
<td>21°27'55'' N, 103°05'40'' O</td>
<td>4</td>
</tr>
</tbody>
</table>

Cuadro 2. Poblaciones de *Greenidae psidii* en árboles de guayabo

<table>
<thead>
<tr>
<th>HUERTA</th>
<th>MUESTREO</th>
<th>ARBOLES (+)</th>
<th>BROTES CON PULGON</th>
<th>UBICACIÓN EN ARBOL</th>
<th>PULGONES PROMEDIO/BROTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A)</td>
<td>1</td>
<td>4</td>
<td>2.25±0.9</td>
<td>MEDIA</td>
<td>1.5±0.2</td>
</tr>
<tr>
<td>B)</td>
<td>1</td>
<td>2</td>
<td>8.0±1.6</td>
<td>MEDIA</td>
<td>2.5±0.7</td>
</tr>
<tr>
<td>C)</td>
<td>1</td>
<td>6</td>
<td>4.66±1.6</td>
<td>MEDIA</td>
<td>4.16±1.1</td>
</tr>
<tr>
<td>A)</td>
<td>2</td>
<td>2</td>
<td>1.5±0.3</td>
<td>MEDIA</td>
<td>1.1±0.3</td>
</tr>
<tr>
<td>A)</td>
<td>3</td>
<td>3</td>
<td>12.3±6.1</td>
<td>ALTA</td>
<td>1.16±0.2</td>
</tr>
<tr>
<td>B)</td>
<td>3</td>
<td>2</td>
<td>14.0±5.5</td>
<td>MEDIA Y ALTA</td>
<td>6.1±1.1</td>
</tr>
<tr>
<td>C)</td>
<td>3</td>
<td>3</td>
<td>15.3±5.1</td>
<td>MEDIA Y ALTA</td>
<td>12.3±2.1</td>
</tr>
<tr>
<td>D)</td>
<td>4</td>
<td>7</td>
<td>12.4±3.7</td>
<td>MEDIA</td>
<td>8.42±0.9</td>
</tr>
</tbody>
</table>

(+) positivo
Los sitios que reportan la presencia de *G. psidii* como Monteverde Costa Rica o Villa Clara Cuba, lugares de clima estable donde las temperaturas máximas oscilan entre 25 y 30°C, y las temperaturas mínimas entre 16 a 23 °C, mientras que en las localidades de Zacatecas donde se encontró a este insecto son sitios con temperaturas extremas, así el municipio de Apozol rebaza temperaturas máximas de 40°C y mínimas menores de -5°C, lo que muestra la capacidad del insecto para adaptarse a diversos rangos de temperatura.

Brevipalpus lewisi (ACARI: TENUIPALPIDAE) COMO VECTOR DE
Citrus leprosis VIRUS TIPOS CITOPLASMÁTICO (CiLV-C) Y
NUCLEAR (OFV-CITRUS) EN *Citrus sinensis*.

Juan Manuel Ávalos-Cerdas¹, Gabriel Otero-Colina¹, Néstor Bautista-Martínez¹
Daniel Ochoa-Martínez², Ángel Villegas-Monter³

¹Programa en Fitosanidad - Entomología y Acarología. ²Programa Fitosanidad -
Fitopatología. ³ Programa Fruticultura. Colegio de Postgraduados, Carretera
México-Texcoco Km. 36.5, Montecillo, Texcoco CP 56230, Estado de México,
México.

*Autor de correspondencia: correo juama88@gmail.com

RESUMEN

Se conocen dos grupos de virus causantes de leprosis de los cítricos, el tipo
citooplasmático (CiLV-C) y el tipo nuclear (OFV-citrus) en México (Otero-Colina et al.,
2016; García-Escamilla et al., 2017). El CiLV-C es transmitido por *Brevipalpus
yothersi* Baker (Acari: Tenuipalpidae) (León et al., 2014; Roy et al., 2014; Roy et al.,
2015; León et al., 2016) mientras que el OFV-citrus es transmitido por *B. californicus*
(Banks) (Acari: Tenuipalpidae) (García-Escamilla et al., 2017). *Brevipalpus lewisi*
McGregor (Acari: Tenuipalpidae) infesta limón y naranja en Arizona y California.
(USA) (Childers y Rodrigues, 2011; Kerns et al., 2011), pero se desconoce su papel como vector de virus. El presente trabajo pretende determinar la capacidad de adquisición e inoculación de CiLV-C y OFV-citrus por parte de *B. lewisi*. El estudio se realizó en el Laboratorio de Acarología del Colegio de Postgraduados, Texcoco, México. Con ejemplares de *B. lewisi* procedentes de Tetipac, Guerrero, México, zona libre de leprosis, se fundó una colonia uni-parental de este ácaro en naranjas agrias. Para esto, las naranjas fueron cubiertas parcialmente con parafina. Con harina de trigo, arena, yeso (1:1:1) y agua se preparó una pasta, la cual se aplicó con un pincel formando un círculo de 3 cm de diámetro en la parte libre de parafina; una vez seca, esta pasta proporcionó refugio a los ácaros. Finalmente, en el borde de la parte cubierta por parafina se trazó una línea con goma entomológica Tanglefoot para confinar los ácaros. Los ácaros se identificaron como *B. lewisi* por observación con microscopios óptico y electrónico de barrido. Para las pruebas de adquisición se utilizaron ácaros en estados de desarrollo larva, ninfa (protoninfia y deutoninfia) y adultos; 15 ácaros por repetición en 10 repeticiones por estadio, se les confinó durante periodos de 24, 48 y 72 horas en hojas de naranja con síntomas de leprosis citoplasmática o nuclear. Las plantas infectadas se obtuvieron de zonas de prevalencia (Querétaro, OFV-citrus, y Tabasco, CiLV-C). Para las pruebas de transmisión, ácaros previamente confinados en hojas de naranja sintomáticas de leprosis fueron transferidos a plántulas de naranja dulce, que se observaron hasta la aparición de síntomas. Tanto en plantas como en ácaros, para determinar si estaban infectados o libres de virus, se extrajo ARN total mediante técnica CTAB, y se corrió una RT-PCR con iniciadores MPF y MPR (CiLV-C) (Locali et al., 2003) y CiLV-N-NPF y CiLVN-NPR (OFV-citrus) (Roy et al., 2014). Dentro de los resultados preliminares obtenidos, las pruebas de adquisición mostraron que en el caso del CiLV-C, de 60 repeticiones solamente se detectaron dos repeticiones positivas en los ácaros adultos (24 y 48 horas). Para la adquisición del OFV-citrus por parte de *B. lewisi*, se observaron 60 resultados positivos para cada una de las horas de evaluación, 24 horas (7/8 larvas, 7/8 ninfas, 6/8 adultos), 48 horas (7/7 larvas, 7/7 ninfas, 6/7 adultos) y 72 horas (6/7 larvas, 7/7 ninfas, 6/7 adultos).
Literatura citada

Las termitas subterráneas son insectos que pertenecen al orden Isoptera. Son insectos sociales, paurometábolos, que se caracterizan por ser de tamaño pequeño con una longitud de 3 a 10 mm, de cuerpo blando y usualmente de colores pálidos, más oscuros en especímenes alados, pueden presentar alas o carecer de ellas (Domínguez, 1994). Una colonia de termitas normalmente está conformada por diferentes tipos de castas: pareja real, alados, suplementarios, obreras, soldados (Bennett et al., 1996).

Las termitas son insectos xilófagos (consumidores de madera), constituyendo la celulosa su alimento principal. Tales insectos, se pueden localizar causando daño a casa-habitación, muebles, postes telefónicos, durmientes de la red ferroviaria, estructuras de madera y especies vegetales (Espinoza, 2003). A nivel mundial se reportan aproximadamente 2800 especies de termitas (Evans, 2007). Para México se reportan 62 especies, las cuales se encuentran distribuidas...
desde el norte en climas templados hasta el sur en climas tropicales (Espinoza, 2003).

En México, las termitas subterráneas de mayor importancia están incluidas en la familia Rhinotermitidae; reportándose para México tres géneros: *Coptotermes*, *Heterotermes* y *Reticulitermes*. Estos géneros contemplan especies que ocasionan daños a productos maderables que se utilizan en construcciones y algunas especies afectan cultivos anuales, plantas de ornato y plantaciones forestales (Cibrian-Tovar et al., 1995).

En Lerdo, Durango no se tienen registros oficiales sobre las especies de termitas subterráneas que causan daño a construcciones. Por lo anterior se realizó el presente trabajo de investigación con el objetivo de determinar las especies de termitas subterráneas asociadas con daño a construcciones en el área urbana de Lerdo, Durango.

El presente trabajo se realizó durante el periodo comprendido entre los meses de enero a diciembre de 2017 en el área urbana del municipio de Lerdo, Durango; el cual se ubica en la región noreste del Estado, entre los paralelos 25° 10’ y 25° 47’ de latitud norte; los meridianos 103° 20’ y 103° 59’ de longitud oeste; con una altitud de 1140 msnm. El clima predominante en esta región es semidesértico, con una precipitación media anual de 250 mm. Se determinaron 4 zonas de muestreo para la ciudad de Lerdo, Durango, ubicándolas de acuerdo a la información proporcionada por el INEGI (2014); tomando como referencia el Parque Victoria. La calle Francisco Zarco, divide a la Ciudad de Norte a Sur, y la Avenida Francisco I.
Madero divide la Ciudad de Oriente a Poniente; con lo anterior se determinaron las zonas Noreste, Noroeste, Sureste y Suroeste (INEGI, 2014).

Se determinaron 250 sitios de muestreo al azar por cada una de las zonas (Noreste, Noroeste, Sureste y Suroeste) distribuidos en diferentes colonias habitacionales. En cada sitio de muestreo cuando fue posible, se colectaron termitas de diferentes castas en casas habitación, escuelas, oficinas, bodegas, centros comerciales, hospitales, hoteles, restaurantes e industrias. En cada sitio de muestreo cuando fue posible se colectaron por lo menos 10 especímenes correspondientes a las castas de soldados o alados. Las termitas colectadas se conservaron en frascos con etanol al 70%, para su posterior identificación, la cual se llevó a cabo en el Laboratorio de Parasitología de la Universidad Autónoma Agraria Antonio Narro – Unidad Laguna.

De acuerdo a los datos obtenidos, se recolectaron 500 especímenes, de los cuales 400 correspondieron a la casta de soldados y 100 especímenes a la casta de alados. De las muestras recolectadas de soldados el 100 % correspondieron a la termita subterránea del este Reticulitermes flavipes Kollar. De los 100 especímenes alados recolectados, el 80 % correspondieron a R. flavipes y 20% a Coptotermes formosanus Shiraki los cuales fueron colectados en un sitio de muestreo. Dichos datos revelan que R. flavipes es la especie de termita responsable de causar daño a los edificios y está ampliamente distribuida en el área urbana de Lerdo, Durango. Por lo anterior se coincide con Triplehorn y Johnson (2005) quienes mencionan que R. flavipes, es considerada como la termita subterránea del este y se encuentra distribuida por todo el mundo, principalmente en Norte América, Canadá y México. Por otra parte Evans (2007) menciona que C. formosanus se encuentra distribuida ampliamente en Estados Unidos de América y Hernández et al. (2014) reporta su presencia en el área urbana de Torreón, Coahuila causado daño a plantas de ornato. Sin embargo, la casta alada de C. formosanus fue recolectada en
enjambrazón en casa habitación no encontrando soldados en dicho muestreo, por lo cual posiblemente *C. formosanus* tenga preferencia por especies vegetales en vez de materiales celulíticos de edificaciones, tales como puertas, ventanas, pisos y en general muebles de madera.

Literatura citada

EFECTIVIDAD DEL INSECTICIDA Rimon Fast 100 SC Y Rimon Supra PARA EL CONTROL DE *Diaphania hyalinata* Linnaeus (LEPIDOPTERA: PYRALIDAE) EN EL CULTIVO DE PEPINO.

Federico Castrejón–Ayala¹, Cid Aguilar-Carpio², Adriana Pérez-Ramírez², A. Jesús Gonzaga-Segura²*, Carlos Armando Ramos-Barreto³

¹Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de productos Bióticos, Instituto Politécnico Nacional. Carretera Yautepec-Jojutla Km. 6, Colonia San Isidro, Yuatepec, Morelos, México

²IDAGR O S. de R. L. de C. V. Carretera Yautepec-Tlayacapan S/N. Col. Puente Pantitlán, Tlayacapan, Mor. C. P. 62545

³Ingeniería Industrial S. A. de C. V., Carretera a Tecualtitan, Km 0.676, San Miguel Zapotitlán. CP. 45977. Poncitlán, Jalisco, México.

Autor de correspondencia: correo jesus.gonzaga@idagro.com.mx

Diaphania hyalinata también conocido como barrenador de las curcubitáceas, ataca entre otros cultivos al pepino (Panthi *et al.*, 2017). El estado de larva se considera como la causante de daños en inflorescencias, brotes y frutos, donde mina dentro de estos (Santiago, 1999). Se ha reportado que esta plaga puede provocar pérdidas por más del 20% (McSorley y Waddill, 1982; Panthi *et al.*, 2017).
Dentro de los distintos métodos de manejo para el control de *Diaphania hyalinata* se encuentra el control químico (Ruiz Sánchez *et al.*, 2008). Por lo tanto, el objetivo de este estudio, fue evaluar la eficacia de los insecticidas Rimon Fast 100 SC y Rimon Supra sobre larvas del barrenador de las cucurbitáceas.

El presente trabajo se realizó en un cultivo comercial de pepino, en el campo conocido como “El partidor”, localidad de Oaxtepec, en Yautepec, Morelos. La ubicación exacta es Longitud 98°59’21.46.5” O, Latitud 18°54’13.36.44” N y una Altitud de 1295 msnm; y se dividió en dos experimentos. Se evaluaron los siguientes tratamientos: Rimon Fast 100 SC (novaluron) a dosis de 150, 200 y 250 mL/ha, Lannate (metomilo) a 450 g/ha y un testigo absoluto, en el primer experimento; y Rimon Supra (novaluron) a dosis de 150, 200 y 250 mL/ha, Lannate (metomilo) a 450 g/ha y un testigo absoluto, para el segundo experimento. Se utilizó un diseño en bloques completamente al azar con cinco tratamientos y cuatro repeticiones, para cada experimento. La unidad experimental se conformó por tres surcos de cinco metros de largo y 1.5 m de ancho (22.5 m²).

Se realizaron dos aplicaciones de los insecticidas, con un intervalo de 7 días entre cada aplicación. Además, se llevó a cabo un muestreo previo a la aplicación de los tratamientos y posteriormente a los 7, 14, 21 días después de la primera aplicación de los insecticidas. La variable evaluada fue el número de larvas vivas en 25 brotes por unidad experimental. A los datos colectados, se les realizó un análisis de varianza con el programa estadístico del SAS (2003) y una separación de medias con la prueba Friedman.

En el experimento uno, para la evaluación de Rimon 100 SC y al inicio del estudio, se registró un promedio de 0.17 larvas de *Diaphania hyalinata*, es decir, no se encontraron diferencias estadísticas entre los tratamientos, por lo que la plaga estaba presente con el mismo grado de infestación en toda la parcela del experimento (Figura 1). En el muestreo uno, siete días de la primera aplicación, no se presentaron diferencias significativas entre los insecticidas, las tres dosis de Rimon 100 SC, disminuyeron el número de larvas de *D. hyalinata* hasta un 85% si se compara con el testigo absoluto, donde se observó un aumento de insectos.
I CONGRESO NACIONAL DE ENTOMOLOGÍA APLICADA

Para el último muestreo (tres), el efecto de los insecticidas siguió controlando el número de larvas vivas, esto se observa si se compara con el testigo absoluto, donde la población de *Diaphania hyalinata* continuaba aumentando (Figura 1). Por otro lado, se encontraron diferencias estadísticas entre los insecticidas. Las dosis a 150 y 250 mL/ha de Rimon 100 SC, registraron menos larvas vivas, si se compara con Lannate (Figura 1).

Figura 1. Efecto de Rimon Fast 100 SC sobre larvas de *Diaphania hyalinata* en el cultivo de pepino. Las letras indican la separación de medias LSMeans de los rangos obtenidos de la prueba de Friedman.

Respecto al experimento dos, en la eficacia de Rimon Supra y durante el muestreo previo, no se encontraron diferencias entre los tratamientos, el número de larvas de
Diaphania hyalinata oscilaba entre 0.14 y 0.16, lo que infiere que la plaga estaba presente en todos los tratamientos con el mismo grado de infestación (Figura 2). Figura 2. Efecto de Rimon Supra sobre larvas de Diaphania hyalinata en el cultivo de pepino. Las letras indican la separación de medias LSMeans de los rangos obtenidos de la prueba de Friedman.

Para el muestreo uno, siete días de la aplicación de los insecticidas, la presencia de larvas vivas por brote, se redujo por el efecto de los insecticidas, mientras que, en el testigo absoluto, se observó un incremento en todas las poblaciones de Diaphania hyalinata (Figura 2). Para el muestreo dos y tres, no se encontraron diferencias estadísticas entre los insecticidas, no obstante el control de D. hyalinata continuaba. Esto se corrobora cuando se observa al testigo absoluto, donde en ambos muestreos, el número de larvas aumentaba consistentemente después del muestreo uno (Figura 2).

El insecticida Rimon 100 SC en todas sus dosis (150, 200 y 250 mL/ha), disminuyó el número de larvas de Diaphania hyalinata. A los 21 días (último muestreo) y con dos aplicaciones, las dosis a 150 y 250 mL/ha de Rimon Fast 100 SC, registraron menos larvas vivas respecto a Lannate. Por otro lado, las dosis evaluadas a 150, 200 y 250 mL/ha de Rimon Supra, tuvieron la misma eficacia para el control de larvas de D. hyalinata. Por lo tanto, la dosis baja de Rimon Supra (150 mL/ha) es la más apropiada para el control de D. hyalinata.

Literatura citada

EFECTIVIDAD DEL INSECTICIDA GALIL 300 SC PARA EL CONTROL DE *Aeneolamia contigua* WALKER (HEMIPTERA: CERCOPIDAE) EN EL CULTIVO DE CAÑA.

Cid Aguilar-Carpio¹, Adriana Pérez-Ramírez¹, A. Jesús Gonzaga-Segura¹, Carlos Armando Ramos-Barreto²

¹IDAGRO S. de R. L. de C. V. Carretera Yautpec-Tlayacapan S/N. Col. Puente Pantitlán. Tlayacapan, Mor. C. P. 62545

²Ingeniería Industrial S. A. de C. V., Carretera a Tecualtitan, Km 0.676, San Miguel Zapotitlán. CP. 45977. Poncitlán, Jalisco, México.

*Autor de correspondencia: correo cid.aguilar@idagro.com.mx

La caña por sus diversos usos agroindustriales principalmente la azucarera, es uno de los cultivos más importante en México, siendo una actividad relevante para la economía nacional. Sin embargo, uno de los problemas fitosanitarios que afecta la producción de este cultivo, es la plaga *Aeneolamia contigua*; en estado de ninfa se conoce como saliva, que succiona la savia de las raíces superficiales, mientras que el adulto, también llamado mosca pinta, se alimenta del follaje, inyectando toxinas que pueden ocasionar daños en hojas (López-Collado *et al.*, 2012). Se ha reportado, que *A. contigua* puede provocar hasta un 60% de pérdidas en la producción de caña (Bautista-Gálvez y González-Cortes, 2005). Entre las alternativas de manejo para esta plaga, se encuentra el control con insecticidas. Por lo tanto, el objetivo de este estudio, fue evaluar la efectividad de GALIL 300 SC sobre ninfas y adultos de *A. contigua*.

El presente estudio se realizó en un cultivo comercial de caña de azúcar, en el campo conocido como “La pequeña propiedad”, municipio de Úrsulo Galván, Estado de Veracruz. La ubicación exacta es Longitud 96°20'24.76.5" O, Latitud 19°23'24.44" N y una Altitud de 7 msnm. Para este estudio, se evaluaron seis tratamientos: Galil 300 SC (Imidacloprid+Bifentrina) a dosis de 300, 350, 400 y 500 mL/ha, Jade a 20 Kg/ha (Imidacloprid) y un testigo absoluto. Se utilizó un diseño en bloques completamente al azar con seis tratamientos y cuatro repeticiones. La unidad experimental se conformó por cuatro surcos de cuatro metros de largo y 1.40 m de ancho (22.4 m²). Se realizaron dos aplicaciones de los insecticidas, con un intervalo de 21 días entre cada aplicación, con un muestreo previo a la aplicación de los tratamientos y posteriormente evaluaciones a los 7, 14, 21, 38 y 35 días después de la primera aplicación de los insecticidas. Las variables evaluadas fueron, el número de ninfas en 1 m de largo y el número de adultos en tres redazos por unidad experimental. A los datos colectados, se les realizó un análisis de varianza con el programa estadístico del SAS (2003) y una separación de medias con la prueba Friedman.

Al realizar el muestreo previo en las plantas de caña, se registró que el promedio de ninfas vivas oscilaban entre 0.75 y 1.25, sin diferencias entre los tratamientos, por lo que se infiere que la plaga se presentó con el mismo grado de infestación en toda la parcela experimental (Figura 1). En el muestreo uno, a los siete días de la primera aplicación, el número de ninfas vivas presentó una disminución en todos los tratamientos con insecticida, pero sin diferencias entre ellos. Contrario al testigo absoluto, quien mostró un incremento (Figura 1). Similares resultados se observaron en el muestreo dos, donde los insecticidas siguieron controlando las ninfas, mientras que, en el testigo absoluto, la población siguió incrementando (Figura 1). Para el muestreo tres, el testigo absoluto y Jade, presentaron un aumento en la población de insectos, comparado con Galil 300 SC en todas sus dosis, quienes siguieron controlando a las ninfas de mosca pinta (Figura 1). Hay que mencionar, que esta misma tendencia se presentó en el muestreo cuatro y cinco (Figura 1), siendo Galil 300 SC quien actuó de una mejor manera para el control de salivazo.
Respecto a los adultos, durante el muestreo previo, se observó que el promedio de mosca pinta oscilaba entre 3.75 y 4.75 insectos vivos, sin diferencias entre tratamientos. Por lo tanto, en toda la parcela experimental, la plaga estaba presente con el mismo grado de infestación (Figura 2). A los siete días después de la primera aplicación, se observó que los insecticidas disminuyeron el número de insectos, aunque sin diferencias entre ellos. Contrario al testigo absoluto, quien registró el mayor número de adultos vivos (Figura 2). Para el muestreo dos y tres, también se observó este mismo fenómeno. Durante el muestreo cuatro y cinco, ya con una
segunda aplicación de los insecticidas, Galil 300 SC en todas sus dosis, registró la menor población de insectos respecto a los muestreos anteriores, mientras que, Jade y el testigo absoluto, registraron un aumento de adultos vivos (Figura 2).

Figura 2. Efecto de Galil 300 SC sobre adultos de mosca pinta en el cultivo de caña. Las letras indican la separación de medias LSMeans de los rangos obtenidos de la prueba de Friedman.

El insecticida Galil 300 SC en todas sus dosis, disminuyó el número de ninfas y adultos de *Aeneolamia contigua* en el cultivo de caña durante todos los muestreos realizados. La segunda aplicación de Galil 300 SC (300, 350, 400 y 500 mL/ha) a los 21 d, mantuvo bajo control a *Aeneolamia contigua* (ninfas y adultos) hasta los 35 d, si se compara con Jade.

Literatura citada

ACTIVIDAD INSECTICIDA DE POLVO DE Eucalyptus sp (MYRTACEAE) SOBRE Sitophilus zeamais (COLEOPTERA: CURCULIONIDAE) Y SU EFECTO SOBRE LA SEMILLA DE MAÍZ.

En México, el maíz *Zea mays* L. (Poales: Poaceae) es la especie agrícola más diversa y una gran porción del territorio forma parte de su centro de origen, domesticación y diversidad, con importancia alimenticia, industrial, cultural y social (CONABIO, 2006). Este cultivo, es afectado por numerosas plagas de interés económico, capaces de infestarlo en cualquier etapa de su desarrollo y parte de la planta (Ortega, 1987). Entre los agentes perjudiciales del maíz almacenado, destaca el gorgojo del maíz *Sitophilus zeamais* (Motschulsky) (Coleoptera: Curculionidae); especie que infesta granos en campo durante el secado del mismo, antes de la cosecha o cuando el grano es almacenado (García-Lara *et al.* 2007). La incidencia de esta plaga supera el 80% en regiones húmedas y es la primera causa de daño en postcosecha y su control se basa principalmente en productos sintéticos, que con el tiempo resultan menos efectivos (Cerna *et al.* 2010). El uso de productos vegetales en el control de plagas ha ido incrementando, por ser una estrategia de bajo riesgo y debido a su alto potencial para formar parte del manejo integrado de plagas, principalmente en postcosecha (Gonzalo, 2002).

El eucalipto *Eucalyptus* sp. (Myrtales: Myrtaceae) importante por sus propiedades medicinales, principalmente para tratar diversas afecciones respiratorias (Milán, 2008), con un amplio espectro de actividades biológicas, incluyendo antimicrobiana, anti fúngica, repelente, herbicida, acaricida, nematicida e insecticida (Cazar, 2014). Se ha utilizado para el control de pulgas, pulgones y en el almacenamiento de granos (Millán, 2008). El objetivo fue evaluar la actividad insecticida del polvo de *Eucalyptus* sp., sobre *S. zeamais* bajo condición de laboratorio y determinar el efecto del polvo sobre la semilla de maíz.

El estudio se llevó a cabo en el Departamento de Parasitología de la Universidad Autónoma Agraria Antonio Narro en Buenavista, Saltillo, Coahuila, México (25°21’13”N, 101°01’56”O, 1610 msnm). Se utilizó follaje de eucalipto y adultos del gorgojo del maíz de una línea de laboratorio, mantenida en semilla de maíz bajo condiciones controladas a 25 ± 5 °C, 40 ± 10% humedad relativa y 12:12 h luz: oscuridad de fotoperíodo. El follaje se deshidrató a temperatura ambiente y posteriormente en una estufa a 35 °C hasta que el peso del material fue constante (7 días), posteriormente el tejido vegetal se trituró en un molino eléctrico y el producto se filtró en un tamiz con malla número 325 (0.044 mm). Para la evaluación del polvo vegetal, se tomó como referencia la dosis diagnóstica de 0.5 g/50 g de maíz, para lo cual ademas se agregó una dosis alta y otra baja, quedando los tratamientos: 0 (testigo), 0.25, 0.5 y 1.0 g de polvo por cada 50 g maíz. Se utilizó maíz de color blanco, el cual primero se desinfectó con un lavado en agua con hipoclorito de sodio al 2% y posteriormente agua destilada, en ambos casos por unos segundos y se resguardó en refrigeración por un período de 48 horas. Se colocaron 50 g de maíz en frascos de vidrio de 120 mL, y en este se colocó cada
uno de los tratamientos y se mezclaron manualmente hasta distribuirlo uniformemente sobre la semilla. En cada frasco tratado e incluido el testigo se colocaron los adultos (sin sexar) de 5 días de edad aproximadamente y fue cubierto con tela tipo organza, para permitir entrada y salida de gases. Se establecieron tres concentraciones y 6 repeticiones cada uno, además de un testigo sin la aplicación de polvo, con 30 adultos del insecto por repetición. La mortalidad se registró a los 8 días de haber aplicado los tratamientos, para lo cual se retiraron todos los adultos del frasco con maíz y se contabilizó el número de vivos y muertos; considerados insectos muertos cuando no presentaron respuesta al estímulo con un fino pincel, apéndices pegados al cuerpo y/o deshidratados (González et al. 2009). La mortalidad en el testigo fue corregida con la fórmula de Abbott (1925), con una mortalidad aceptada del 15%. Se contabilizó el número de granos dañados (picados, perforados, roídos por acción de los insectos) y los granos sanos y se determinó el porcentaje de daño en grano (DG) con la fórmula siguiente:

\[
DG (\%) = \left(\frac{\text{Número de granos dañados}}{\text{Número de granos totales}} \right) \times 100
\]

Se evaluó la viabilidad de la semilla, mediante la germinación de la misma. Para este ensayo se seleccionaron 10 semillas en cada repetición de cada tratamiento y se colocaron sobre una caja de Petri con papel filtro y agua destilada para su imbibición, bajo condiciones controladas en cámaras bioclimáticas. Posteriormente a los 7 días se determinó el número de semillas germinadas y no germinadas y se obtuvo el porcentaje de germinación (G) y de inhibición (I):

\[
G(\%) = \left[\frac{\text{Semillas germinadas}}{\text{Semillas totales}} \right] \times 100
\]

\[
I(\%) = \left[\frac{\text{Semillas no germinadas}}{\text{Semillas totales}} \right] \times 100
\]

En el mismo ensayo se evaluó el tamaño de la parte aérea que da lugar al brote terminal formado por tallo y hoja (tallo) y la parte subterránea que da lugar a radícula (raíz) durante el tiempo que duró el ensayo y se determinó la longitud promedio de crecimiento, con respecto al testigo. Los datos de mortalidad se evaluaron con un análisis Probit para estimar el valor de la CL 50, CL 95 y el margen de fiabilidad al 95% de significancia. En todos los parámetros, los datos de resultados se transformaron a raíz cuadrada de arcoseno (excepto raíz y tallo) y todos se sometieron a un análisis de varianza bajo un diseño completamente al azar y comparación entre medias con una prueba de Tukey (p<0.05), utilizando el software estadístico SAS/STAT 9.0 (SAS, Institute 2002).

La aplicación de polvo de eucalipto presentó un efecto de control significativo (p<0.05) sobre el gorgojo del maíz en las tres concentraciones, aunque entre ellas no se observaron diferencias significativas, con una mortalidad máxima de 100% en la concentración más alta (Cuadro 1).

Cuadro 1. Mortalidad de *Sitophilus zeamais* por efecto de polvo de *Eucalyptus* a ocho días de evaluación.

<table>
<thead>
<tr>
<th>Concentración (g)</th>
<th>Mortalidad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>13.153 b</td>
</tr>
</tbody>
</table>
El daño en grano fue mínimo, probablemente por el poco tiempo de exposición de los gorgojos en el estudio, aunque sí se observaron diferencias significativas entre tratamientos, con mayor daño en el testigo; daño que no afectó la viabilidad de la semilla, no así en los polvos donde se presentó inhibición significativa sobre la germinación de la semilla. En el parámetro de longitud de raíz, se observó un efecto sobre el crecimiento, con un menor crecimiento a medida que aumentó la concentración, no así para el parámetro de crecimiento tallo, donde no se observó un efecto significativo sobre este (Cuadro 2). Con base en los resultados, se considera al eucalipto prometedor para el control del gorgojo del maíz, no obstante; estos resultados difieren a lo encontrado por Gonzalo *et al.* (2003), cuyo resultados con polvo de *Eucalyptus* sp., no fue efectivo, con mortalidades menores a 4% en concentraciones menores a 2 g y *Silva et al.* (2003) con *Eucalyptus globulus*, con una mortalidad de 0.83%. González-Guiñez *et al.* (2016), encontraron mortalidades menores a 10% con aceite de *E. globulus* y *E. nitens*, considerados poco efectivos por esta vía, no obstante si encontraron toxicidad como fumigante y con actividad de repelencia, sin afectar la germinación del maíz; situación contraria al presente, donde si fue significativa la inhibición de la germinación y reducción de la raíz.

Cuadro 2. Efecto del polvo de *Eucalyptus* sp., sobre parámetros de calidad de la semilla de maíz.

<table>
<thead>
<tr>
<th>Concentración (g)</th>
<th>Daño en grano(%)</th>
<th>Germinación(%)</th>
<th>Inhibición(%)</th>
<th>Raíz (cm)</th>
<th>Tallo (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>2.518 a</td>
<td>100.00 a</td>
<td>0.00 b</td>
<td>3.76 a</td>
<td>1.21 a</td>
</tr>
<tr>
<td>0.25</td>
<td>1.388 ab</td>
<td>78.33 ab</td>
<td>21.67 ab</td>
<td>2.96 ab</td>
<td>1.37 a</td>
</tr>
<tr>
<td>0.50</td>
<td>0.347 b</td>
<td>73.33 ab</td>
<td>26.67 ab</td>
<td>2.08 ab</td>
<td>0.83 a</td>
</tr>
<tr>
<td>1.00</td>
<td>0.557 b</td>
<td>66.67 b</td>
<td>33.33 a</td>
<td>1.70 b</td>
<td>0.73 a</td>
</tr>
<tr>
<td>GL</td>
<td>3.23</td>
<td>3.23</td>
<td>3.23</td>
<td>3.23</td>
<td>2.32</td>
</tr>
<tr>
<td>F</td>
<td>7.54</td>
<td>5.64</td>
<td>5.64</td>
<td>3.90</td>
<td>2.73</td>
</tr>
<tr>
<td>Pr> F</td>
<td><0.0026**</td>
<td>0.0086**</td>
<td>0.0086**</td>
<td>0.0305*</td>
<td>0.0809<ns</td>
</tr>
<tr>
<td>R²</td>
<td>0.76</td>
<td>0.70</td>
<td>0.70</td>
<td>0.66</td>
<td>0.61</td>
</tr>
</tbody>
</table>

1Medias entre tratamientos con la misma letra no son significativamente diferentes (Tukey; *p*<0.05).
**Indica significancia contraste valor *F* a *p*<0.01.
*Indica significancia contraste valor *F* a *p*<0.05.
<ns>no significativo.

Literatura Citada

DISTRIBUCIÓN Y RANGO DE HOSPEDEROS DEL VIRUS DE LA LEPROSIS DE LOS CÍTRICOS (CILV-C & CILV-N) EN LOS PRINCIPALES ESTADOS CITRÍCOLAS DE MÉXICO.

1*Postgrado de Fitosanidadad. Colegio de Postgraduados. 56230. Montecillo, Estado de México
2*Posgrado en Recursos Genéticos y Productividad. Colegio de Postgraduados. 56230. Montecillo, Estado de México
3*Campañas de Prioridad Nacional, Dirección General de Sanidad Vegetal, Ciudad de México, México

Autor de correspondencia: correo gonzalez.hugo@colpos.mx

1. ANTECEDENTES

El virus de la leprosis de los cítricos causa una de las enfermedades más destructivas en América (Rodríguez *et al.*, 2003). Esta enfermedad está asociada a un complejo de virus: el *Citrus leprosis* virus tipo citoplasmático (CiLV-C) y tipo nuclear [Orchid Fleck virus (OFV)] incluyendo sus dos variantes: el virus de la leprosis tipo nuclear (CiLV-N) y el virus de la mancha necrótica (CNSV). De acuerdo con Bastianel *et al.*, 2006 y SENASICA, 2013, estos virus infectan principalmente especies de cítricos dulces como la naranja (*Citrus sinensis*) y mandarina (*Citrus reticulata*) y considera que los limones (*C. aurantifolia*) son inmunes a la infección. Existen muchas otras especies de plantas hospedantes para estos virus, algunas de las cuales pueden ser portadoras asintomáticas, por lo que la movilización de éstas podría incrementar el riesgo de la distribución de la enfermedad (Garita *et al.*, 2014; Nunes *et al.*, 2012).

2. JUSTIFICACIÓN

Este estudio resulta de gran importancia con el fin de contribuir a generar información actualizada, con los cuales se logren plantear estrategias de vigilancia y manejo en el cultivo de cítricos de especies dulces y agrias, así como realizar análisis de riesgos epidémicos a niveles regionales. Por ello, se tiene el objetivo de determinar la distribución del virus de la leprosis, tipo nuclear y citoplasmático, en diferentes especies de cítricos de las principales zonas productoras del país y
averiguar si existe una relación de especificidad o preferencia entre la presencia del virus de la leprosis y los diversos hospederos.

3. METODOLOGÍA

3.1 Colecta de material foliar para determinar la presencia de los virus (CiLV-C y CiLV-N) en plantas

El trabajo se realizó en 15 estados productores de cítricos en México. Se realizó un muestreo en “cinco de oros”, y en cada punto se colectó material vegetal de cinco árboles, haciendo un total de 25 árboles por huerto de especie de cítrico. En cada árbol, se tomaron veinte hojas; (cinco por cada punto cardinal), a una altura de 150 cm. Las veinte hojas por árbol consistieron de hojas con y sin síntomas, las cuales fueron guardadas y etiquetadas en bolsas de polipapel. De cada hoja se extrajeron cinco secciones de aproximadamente 1 cm², los cuales fueron depositados en tubos tipo Eppendorf de 1.5 mL conteniendo 500 µL de RNAlater® (Invitrogen) como estabilizador de ARN, para posteriormente ser transportados al laboratorio. Adicionalmente, se recolectaron hojas de vegetación adyacente a cada huerto de cítrico muestreado, con el fin de determinar posibles plantas hospedantes alternas del virus de la leprosis. Para esto, se tomaron 10 hojas al azar de vegetación circundante de cada punto cardinal de la parcela. Las hojas recolectadas fueron procesadas de la misma forma como se describió para las hojas de cítricos.

3.2 Detección del virus de la leprosis

La extracción de ARN (Acido ribonucleico) así como la detección del virus por RT-PCR (Reversa transcriptasa y Reacción en cadena de la Polimerasa) en las hojas se realizó utilizando el kit RNeasy (QIAGEN®) y el kit de Transcriptasa inversa (Thermo®) respectivamente, siguiendo las instrucciones de los fabricantes. Posteriormente, la detección de los virus CiV-C, CiLV-N, OFV y CNSV se realizaron mediante reacciones de PCR de punto final (Locali et al., 2003; Roy et al., 2014; Cruz-Jaramillo et al., 2014).

4. RESULTADOS Y DISCUSIÓN
En general, cuatro virus fueron encontrados en los estados estudiados pero en diferentes proporciones. El virus de mayor distribución fue el CiLV-C, seguido de OFV, CNSV y finalmente el CiLV-N con el menor número de detecciones. La especie con el mayor número de detecciones fue la naranja dulce, seguida del limón. La presencia del virus OFV fue detectada en 11 de los 15 estados estudiados; sin embargo, en la mayoría de los casos sobre muestras asintomáticas, por lo que se discute la posibilidad de que esta variante se encontrara en México pero sin haber sido detectada. La presencia de virus en plantas asintomáticas, sugiere que las detecciones deben realizarse mediante técnicas moleculares, y no únicamente basadas en la presencia de síntomas.

5. LITERATURA CITADA

INSECTOS PREDADORES Y PARASITOIDES NATIVOS DE LERDO, DURANGO. PRIMAVERA-VERANO 2016.

Fabián García-Espinoza1*, Ma. Teresa Valdés-Perezgasga1, Javier López-Hernández1, Sergio Rodríguez-Hernández1 y Vicente Hernández-Hernández1

*Autor de correspondencia: correo garcia-espinoza@hotmail.com
En la mayoría de los grupos de insectos se encuentran especies entomófagas, que se alimentan de otros insectos como depredadores o parásitos (Badii et al., 2000a, b). Los parasitoides son insectos cuyo desarrollo tiene lugar sobre o dentro de otro insecto fitófago. Es una combinación de parasitismo que solo se presenta en insectos. El parasitoido se come al insecto plaga donde el tegumento y la larva se convierte en pupa y después el adulto. Estos ejercen un papel muy importante en el control de plagas (Carnero et al., 1988 y Pérez, 2000).

El conocimiento de las interacciones entre presa y predador es de suma importancia para poseer un buen entendimiento sobre el orden biológico natural que existe en un agroecosistema (Pedigo, 1996). Los predadores se han aprovechado a través del tiempo en diferentes partes del mundo y son parte del éxito más reconocido en el control biológico de plagas. Se dice que el 15% de todos los insectos existentes son parasíticos, eso quiere decir, que alrededor de 150,000 especies son potencialmente agentes de control biológico (Nicholls, 2008).

La importancia del presente estudio radica en que se desconocen los grupos de insectos con hábitos predadores y parasitoides que habitan en el municipio de Lerdo, Durango, por lo tanto éste representa un estudio preliminar para identificar a los mismos.

El presente estudio se realizó en el área circundante de los ejidos Monterrey (25°33'31.52"N, 103°31'2.30"O) y La Loma (25°27'47.69"N, 103°40'20.18"O) municipio de Lerdo, Durango. Este municipio es parte de la Comarca Lagunera. La Comarca Lagunera está ubicada en la zona biogeográfica denominada Desierto Chihuahuense. Esta región se caracteriza por su clima semidesértico y poca precipitación. Su altitud promedio es de 1200 msnm.

Las áreas en las que se realizaron las colectas sistemáticas fueron asignadas al azar, sin embargo, se consideraron prioritariamente aquellas que colindaron con zonas de producción agrícola. Las zonas con historial agrícola y que al momento de realizar el estudio eran parcelas abandonadas o en recuperación y las zonas circundantes con vegetación nativa, también fueron consideradas en la colección de especímenes. Las colectas fueron realizadas en períodos quincenales en los sitios previamente establecidos.

El presente estudio planteó la recolección de especímenes que abarcaron la época del año, primavera y verano del 2016. Las colectas se realizaron mediante el uso de redes entomológicas y entre otras herramientas, utilizando distintas técnicas de captura pasiva y activa. La colección de especímenes se realizó con pinzas entomológicas y pinceles para no dañar las estructuras de los mismos. Los especímenes colectados fueron preservados en etanol al 70% y transportados al laboratorio del departamento de Parasitología de la UAAAN UL para su posterior identificación.

La identificación a nivel orden y familia se realizó utilizando las claves dicotómicas de los siguientes libros: Triplehorn y Johnson (2005), Evans (2007), Zumbado
Los datos de los especímenes identificados fueron vaciados a un archivo de Excel que forma parte de la base de datos de la colección entomológica del Departamento de Parasitología. Se identificaron 95 especímenes agrupados en cinco órdenes de insectos. Los órdenes que predominaron fueron Diptera e Hymenoptera. Dentro de estos dos órdenes se encuentran varias familias con hábitos predadores y parasitoides.

Tres familias agrupadas en el orden Diptera, fueron identificadas con hábitos predadores, Asilidae, Tipulidae y Pantophthalmidae, coincidiendo esto con lo consignado por Dysart (1991) y CBUAGRO (2018), donde se enlistan varias familias de moscas con potencial en control biológico de plagas, sobresaliendo entre ellas la familia Asilidae.

La familia Sphecidae del orden Hymenoptera, fue identificada con hábitos predadores, concordando con La Salle y Gauld, (1993), quienes refieren que la familia Sphecidae tiene hábitos predadores.

La familia Coccinellidae del orden Coleoptera, colectada durante este estudio, fue identificada con hábitos predadores, Zúñiga (1967 y 1985) y Zúñiga et al. (1986), reportaron que esta familia tiene hábitos predadores.

Se identificaron un total de cinco órdenes de insectos, Diptera, Hymenoptera, Coleoptera, Hemiptera y Odonata, en las dos órdenes Diptera e Hymenoptera identificadas, fueron agrupadas familias con hábitos parasitoides, sin embargo los órdenes restantes fueron identificadas familias con hábitos predadores, así mismo, se confirmó la presencia de parasitoides y predadores en las épocas de primavera y verano del 2016 en el municipio de Lerdo, Durango.

Literatura Citada

Zúñiga, E. 1967. Lista preliminar de áfidos que atacan cultivos en Chile, sus huéspedes y enemigos naturales. Agricultura Técnica 27:165-177.

PRIMER REPORTE DE Chilocorus sp (COLEOPTERA: COCCINELLIDAE) COMO DEPREDADOR DE Melanaphis sacchari (HEMIPTERA: APHIDIDAE), EN SORGO, EN NUEVO LEÓN, MÉXICO.

Jessica Jaimes-Orduña¹, Orquídea Pérez-González¹* y Francisco Zavala-García¹

*Autor de correspondencia: correo orquideapg@hotmail.com

El sorgo, *Sorghum bicolor* (L.) Moench, debido a sus múltiples usos tiene una gran demanda en el mercado nacional e internacional por parte de la industria (Rebollar *et al*., 2016). En México, anualmente se plantan cerca de dos millones de hectáreas (SIAP 2015). Nuevo León ocupa el decimocuarto lugar nacional en la producción de sorgo granífero, contribuyendo con el 0.6% del volumen de este cultivo en el país. Este cultivo es afectado por diferentes plagas: *Contarinia sorghicola* (Diptera: Cecidomyiidae), *Spodoptera frugiperda* (Lepidoptera: Noctuidae), *Nezara viridula* (Hemiptera: Pentatomidae), *Rhopalosiphum maidis* (Hemiptera: Aphididae).

Sin embargo, una nueva plaga identificada como el pulgón amarillo de la caña de azúcar, *Melanaphis sacchari* (Zehntner) (Hemiptera: Aphididae) se encuentra afectando al sorgo en el país. En 2014, el pulgón amarillo de la caña de azúcar fue identificado por primera vez en el estado de Tamaulipas; mientras que en 2015 ya se registraban daños severos en Nuevo León (SENASICA, 2015; SAGARPA, 2015).

Se realizaron muestreos el 12 y 17 de octubre en el municipio de Marín, Nuevo León el cual se localiza en el Km 17 de la Carretera Zuazua-Marín; siendo sus coordenadas geográficas de 25º 53´ Latitud Norte y 100º 03´ Longitud Oeste, con una altitud de 357 msnm, en una parcela cultivada con sorgo, donde se determinó la presencia de dos nuevas especies de depredadores del pulgón amarillo. Las muestras fueron colectadas, etiquetadas, conservadas en alcohol al 70% y transportadas al Departamento de Entomología de la Facultad de Agronomía de la Universidad Autónoma de Nuevo León donde actualmente se encuentran
depositadas. La identificación se llevó a cabo utilizando las claves taxonómicas (Gordon, 1985).

C. cacti, ha sido utilizado como agente de control biológico en México y el mundo (Cave 2006, Fernández et al., 2010), un estudio de laboratorio reporta que este coleóptero puede sobrevivir a 41 °C durante 50 horas (Hattingh y Samways, 1994), lo que indica que podría adaptarse a las altas temperaturas de verano presentes en el noreste de México. Esta investigación reporta por primera vez, la presencia de *C. cacti* y *C. stigma* en el sorgo infestado por el pulgón amarillo de la caña de azúcar en México.

MALEZA HOSPEDANTE DE Haplaxius (Myndus) crudus VAN DUZEE (HEMIPTERA: CIXIIDAE) EN EL ÁREA URBANA DE TORREÓN, COAHUILA.

Javier López- Hernández¹ *, Sergio Hernández-Rodríguez¹, Ma. Teresa Valdés-Perezgasga¹, Fabián García Espinoza¹ y Vicente Hernández Hernández¹

¹Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro-Unidad Laguna. Periférico Raúl López Sánchez Km s/n, Col. Valle Verde, Torreón, Coahuila, México. C. P. 27054.

*Autor de correspondencia: correo marjav61@hotmail.com

La enfermedad conocida como Amarillamiento Letal de las Palmas (ALP) es causada por un fitoplasma, el cual se caracteriza por carecer de pared celular (Sermeño *et al.*, 2005). El patógeno es transmitido por un insecto vector *Haplaxius*
(Myndus) crudus Van Duce (Hemíptera: Cixiidae) que puede estar hospedado en maleza (Pérez et al., 2004). Perteneciente a diferentes familias botánicas: prefiriendo a las especies de la familia Poaceae (SENASICA, 2016).

Se reporta como maleza hospedante de Haplaxius (Myndus) crudus a las especies de Poaceas: zacate Bermuda Cynodon dactylon L, zacate bahía Paspalum notatum Flüggé, pasto San Agustín Stenotaphrum secundatum (Walker) Kuntze (Ruiz et al., 2013). Sin embargo, en la familia Fabaceae se reporta como maleza hospedante de este insecto: Kudzu tropical Pueraria phaseoloides (Roxb.) Benth, Maní forrajero Arachis pintoi Krapovickas y Gregory (Howard y Gallo, 2015).

Durante 2015 se presentó la enfermedad ALP en la ciudad de Torreón, Coahuila ocasionando una contingencia ambiental, causando la muerte de palmas principalmente palma datilera y canarias (Ríos, 2015). Debido a lo anterior y a que no se disponen datos oficiales sobre maleza hospedante de Haplaxius (Myndus) crudus se realiza la presente investigación teniendo como objetivo identificar la maleza hospedante de Haplaxius (Myndus) crudus.

La presente investigación se realizó en el área urbana del municipio de Torreón, Coahuila México; la cual, se encuentra situado al norte del país, en el estado de Coahuila colindando al norte y al este con el municipio de Matamoros; al sur y al este con el estado de Durango. Se localiza a una distancia aproximada de 265 kilómetros de la capital del estado. Cuenta con una superficie de 1,947.70 kilómetros cuadrados, que representan el 1.29 % del total de la superficie del estado de Coahuila (SOATCM, 2016). El presente trabajo de investigación se realizó durante el periodo comprendido de enero – junio de 2017.

Los muestreos fueron dirigidos a maleza con presencia de insectos en: residencias, la UAAAN-UL, Periféricos, calles, terrenos baldíos y parques, tomando como base la presencia de palmas. El tipo de muestreo de esta investigación fue de tipo cualitativo. Los insectos colectados fueron conservados en alcohol al 70%. La maleza colectada fue sometida a un proceso de prensado-secado, para posteriormente ser montada e identificada. La identificación de Haplaxius (Myndus) crudus y maleza hospedante de este insecto fue realizada en el laboratorio de Parasitología de la Universidad Autónoma Agraria Antonio Narro Unidad Laguna.
Para identificación de insectos colectados se separaron en base a órdenes y Familia, siendo de interés la familia Cixiidae del orden Hemíptera. Para la identificación de los Cixiidos se utilizó un microscopio estereoscopio marca Carl Zeiss. Las claves para la identificación de *Haplaxius (Myndus) crudus* Van Duzee de Howard y Gallo (2015).

Para la identificación de las especies de maleza se utilizaron las claves taxonómicas de Maleza de Buenavista (Villarreal, 1983). Las malezas identificadas fueron montadas en cartoncillo blanco de 29.7 cm de ancho por 42 cm de largo y etiquetadas en la parte inferior derecha con etiquetas de 10 cm 8 cm. Dicha etiqueta contenía los siguientes datos: nombre común, nombre técnico, familia, lugar de colecta, altitud, colector, identificador y observaciones.

Se identificaron 18 especies pertenecientes a cinco familias botánicas las cuales son hospedantes de *Haplaxius (Myndus) crudus* Van Duzee (Cuadro1).

Cuadro 1. Maleza hospedante de *Haplaxius (Myndus) crudus* Van Duzee en el Área urbana de Torreón, Coahuila.

<table>
<thead>
<tr>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Familia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diente de león</td>
<td>Taraxacum officinale (Web).</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Hierba del caballo</td>
<td>Calyptocarpus viales Less.</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Falsa altamisa</td>
<td>Parthenium hysterophorus L.</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Falso diente de león</td>
<td>Sonchus oleraceus L.</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Lechuga silvestre</td>
<td>Lactuca serriola L.</td>
<td>Asteraceae</td>
</tr>
<tr>
<td>Bolsa del pastor</td>
<td>Capsella bursa-pastoris L.</td>
<td>Brassicaceae</td>
</tr>
<tr>
<td>Hierba del negro</td>
<td>Sphaeralcea angustifolia (Cav.)</td>
<td>Malvaceae</td>
</tr>
<tr>
<td>Malva quesitos</td>
<td>Malva parviflora L.</td>
<td>Malvaceae</td>
</tr>
<tr>
<td>Zacate grama</td>
<td>Cynodon dactylon L.</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Zacate salvación</td>
<td>Bromus unioloides H.B.K</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Zacate Johnson</td>
<td>Sorghum halepense (L.) Pers.</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Zacate pinto</td>
<td>Echinochloa crus-galli L.</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Zacate pegarropa</td>
<td>Setaria adhaerens L.</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Zacate casamiento</td>
<td>Eragrostis mexicana (Hornem).</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Zacate buffel</td>
<td>Cenchrus ciliaris L.</td>
<td>Poaceae</td>
</tr>
</tbody>
</table>
Se encontró que 18 especies de malezas pertenecientes a 5 familias botánicas (Asteraceae, Brassicaceae, Malvaceae, Poaceae y Solanaceae) son hospedantes de *Haplaxius (Myndus) crudus* Van Duzee en el área urbana de Torreón, Coahuila. Se coincide en parte con SENASICA (2016), ya que reportan como maleza hospedante de *Haplaxius (Myndus) crudus* a la familia Poaceae.

Literatura citada

COMPARACIÓN DE DIETAS ARTIFICIALES EN EL DESARROLLO, COLORACIÓN Y SISTEMA INMUNE DE Helicoverpa armigera, (LEPIDOPTERA: NOCTUIDAE).

Kalina Miranda Perkins¹*, Daniel Luis Viol¹, Simon Luke Elliot ¹

¹ Department of Entomology, Universidade Federal de Viçosa. Viçosa/MG, Brazil.

*Autor de correspondencia: correo kalinaperkins@gmail.com

Espacio en blanco

El gusano del algodón, Helicoverpa armigera (Hübner) 1808 (Lepidoptera: Noctuidae), es considerado una de las plagas más importantes a nivel mundial debido a que es una especie polífaga, con alta movilidad y fecundidad, diapausa facultativa, migración estacional y capacidad para desarrollar resistencia a insecticidas, lo que le permite sobrevivir en hábitats inestables.

En México, esta plaga se encuentra bajo control oficial y, debido a que está ausente en el país pero con potencial para causar pérdidas económicas en cultivos hospedantes, existe un programa de vigilancia epidemiológica fitosanitaria por parte del Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. En América,
se detectó por primera vez en Brasil en el año 2012 por investigadores de la Empresa Brasileña de Investigación Agropecuaria (EMBRAPA). Actualmente, también se encuentra en otros países del continente. Debido a esta situación y a través de la propuesta intitulada “Impact and Biological Control of a New Invasive Global Crop Pest in Brazil”, Brasil y el Reino Unido han integrado experiencias con insecticidas de origen microbiano.

La demanda de individuos de *H. armigera* para estudios de susceptibilidad a entomopatógenos, entre otros, se satisface a partir de crías bajo dietas artificiales en laboratorio. Si tomamos en cuenta que la composición de la dieta es un elemento crítico para el desarrollo, supervivencia, comportamiento y estado del sistema inmune de algunos insectos, entonces de ella dependerá el tener conclusiones fiables en este tipo de experimentos y las respuestas y aplicaciones en campo, aspectos que no siempre son considerados en las investigaciones.

Un estudio hecho con *Spodoptera littoralis*, otro lepidóptero, nóctuido, afirma que la nutrición y en específico la calidad de la proteína, es un factor clave en la actividad antibacteriana de la lisozima y en la melanización cuticular, la cual también se determina como una inversión en la respuesta inmune. De la misma forma pueden ser citados otros estudios que también consideran a la nutrición como un factor crítico en la inmunidad de ciertos insectos, que indican que la fenoloxidasa, lisozima, número de hemocitos y el grado de deposición de la melanina en la cutícula, son indicadores del estado inmunológico e influyen en funciones fisiológicas vinculadas a la supervivencia.

Debido a lo anterior y para el establecimiento de mejores dietas para *H. armigera*, se consideró en este trabajo, evaluar los efectos de estas en la respuesta inmune y desarrollo del insecto. Las dietas utilizadas actualmente en la cría de este insecto en laboratorio, se modificaron principalmente en los porcentajes de proteína y lípidos. De proteína porque se le ha relacionado con funciones del sistema inmune en diversos estudios, y de lípidos debido a su importancia en las funciones
reproductivas y a que, junto con la proteína, se encuentran en mayor proporción de la composición nutricional de diversos insectos.

En este trabajo *H. armigera* se obtuvo a partir de huevos adquiridos en la empresa BUG Agentes Biológicos (Copyright © Bug, Brasil). Los individuos se mantuvieron en una sala de cría a 28±2 ºC, 50± 5% RH y fotoperiodo de 12:12 luz: oscuridad. Se utilizaron dos dietas naturales (hojas de *Phaseolus vulgaris* y *Brassica oleracea*) y cinco dietas artificiales. La dieta artificial 5 corresponde a la propuesta por Mihm (1984), diseñada inicialmente para *Spodoptera frugiperda*, y actualmente usada en otros nóctuidos como *Helicoverpa zea*, que dentro de sus hospedantes tienen al maíz. Las dietas 2 y 3 son modificaciones a Greene *et al.* (1976) y Teakle and Jensen (1985), esta última sin vitaminas y con harina de soya únicamente, por lo que se le adicionaron vitaminas y harina de garbanzo (*Cicer arietinum*), ya que éste se utiliza para la cría de *H. armigera*, con resultados favorables para su desarrollo y supervivencia. Dado que con las dietas 2 y 3 se obtuvieron los mejores resultados en los parámetros biológicos evaluados en la primera parte del trabajo, se derivaron de ellas otras dos (1 y 4), en las que se invirtieron las cantidades de lípidos, por las razones expuestas en la introducción.

Las dietas 1, 2, 3 y 4 fueron los tratamientos para la segunda parte referente a las respuestas del sistema inmune en las larvas. Se utilizaron larvas entre el cuarto y quinto instar, sin signos o síntomas de contaminación o enfermedad para todos los experimentos. Para evaluar la densidad de hemocitos se extrajo la hemolinfa de 30 larvas por cada dieta y se siguió el método Ibrahim and Kim 2006 y Silva *et al.*, 2013, para simular la invasión por un parásito con el fin de activar la respuesta inmune se utilizó el método de los mismos autores. La actividad lítica contra la pared celular de *Micrococcus lysodeikticus* fue determinada mediante la hemolinfa de las larvas de los distintos tratamientos bajo el método modificado de Kurtz *et al.*, 2000 y de Silva *et al.*, 2013.
En la evaluación de la expresión de diferentes fenotipos de coloración, las larvas fueron fotografiadas través de un estereoscopio Zeiss ® (model Stereo Discovery V20, con ayuda del software ImageJ se analizaron bajo el método modificado por Silva et al., 2013. Aunado a esto se clasificaron las larvas en chicas, medianas y grandes y se obtuvo la proporción de cada uno de los tamaños con respecto al tipo de dieta administrada. Los efectos de la dieta en los parámetros s fueron analizados por medio de Modelos Lineales Generalizados (GLM) usando el software R 2.13.0, versión 40.

Las evaluaciones del sistema inmune de los organismos alimentados con las dietas a base de frijol y garbanzo con y sin leche en polvo, indicaron que la actividad antibacteriana de la lisozima (F3,119= 1.07; p= 0,37) y el número de hemocitos (F3,117= 2.03; p= 0,11) de las larvas no son afectados por estos tipos de dietas. Sin embargo, la actividad de la fenoloxidasa (PO) tuvo diferencias significativas entre las dietas 1, 4 y 2, 3 (F3.115 = 4.54; p < 0.05). Las mejores respuestas para la formación de cápsulas de hemocitos las tuvieron las dietas 1 y 4, mismas que resultaron de las modificaciones y obtuvieron los mejores porcentajes de supervivencia (Cuadro 1 y Figura 1). La melanización de las cápsulas no presentó diferencias significativas entre los tratamientos (F3,115= 0,99; p = 0,40).

Cuadro 1. Porcentaje de supervivencia y parámetros de calidad evaluados en Helicoverpa armigera con diferentes dietas artificiales y naturales

<table>
<thead>
<tr>
<th>Dieta</th>
<th>n</th>
<th>% Supervivencia</th>
<th>Período Larval (d)</th>
<th>Peso Larval (mg)</th>
<th>% Supervivencia</th>
<th>Período Juvenil (d)</th>
<th>Peso pupal (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Frijol</td>
<td>45</td>
<td>76</td>
<td>17.7 ± 0.4 a</td>
<td>464.8 ± 0.017 a</td>
<td>69</td>
<td>27.7 ± 0.4 a</td>
<td>328.9 ± 0.006 a</td>
</tr>
<tr>
<td>2 Frijol + leche en polvo</td>
<td>45</td>
<td>76</td>
<td>17.2 ± 0.3 a</td>
<td>368.7 ± 0.024 a</td>
<td>56</td>
<td>30.9 ± 0.5 b</td>
<td>344.3 ± 0.006 a</td>
</tr>
<tr>
<td>3 Garbanzo</td>
<td>45</td>
<td>56</td>
<td>28.6 ± 1.0 c</td>
<td>75.2 ± 0.013 c</td>
<td>33</td>
<td>42.0 ± 1.3 c</td>
<td>272.3 ± 0.016 c</td>
</tr>
<tr>
<td>4 Garbanzo + leche en polvo</td>
<td>45</td>
<td>89</td>
<td>19.8 ± 0.5 b</td>
<td>297.8 ± 0.028 b</td>
<td>71</td>
<td>29.7 ± 0.6 b</td>
<td>299.4 ± 0.008 b</td>
</tr>
<tr>
<td>5 Maíz</td>
<td>45</td>
<td>7</td>
<td>48.7 ± 2.2 d</td>
<td>2.4 ± 0.001 c</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 Hojas de repollo</td>
<td>45</td>
<td>13</td>
<td>25.3 ± 1.4 c</td>
<td>38.6 ± 0.012 c</td>
<td>9</td>
<td>33.3 ± 2.1 b</td>
<td>230.0 ± 0.035 c</td>
</tr>
<tr>
<td>7 Hojas de frijol</td>
<td>45</td>
<td>7</td>
<td>26.7 ± 1.8 c</td>
<td>46.3 ± 0.009 c</td>
<td>4</td>
<td>39.0 ± 2.0 c</td>
<td>224.3 ± 0.038 c</td>
</tr>
</tbody>
</table>

Con los resultados anteriores se puede inferir que las dietas probadas no tienen un impacto consistente en el sistema inmune de las larvas de H. armigera. Sin embargo, las dos dietas que se destacaron en la supervivencia y el
desarrollo de los insectos (dieta 1 y 4) también lo hicieron en la capacidad de activación de la fenoloxidasa (Figura 1), aspecto también evidente en la dieta de garbanzo enriquecida con lípidos a través de la leche en polvo, a diferencia de la 3 (Cuadro 1 y Figura 1).

La evaluación de la coloración de la cutícula de las larvas de *H. armigera* indicó que éstas se pueden encontrar significativamente más melanizadas, cuando se alimentan de una dieta que afecta sus parámetros biológicos. La dieta 3 que generó este tipo de larvas ($F_{3,202}=5.12; p<0.001$), fue en la que también se tuvo el tamaño menor de las larvas. Los estudios al respecto han investigado el impacto de la dieta en la inmunidad mediante la reducción de la cantidad de alimentos, a través del control de la cantidad de nutrientes específicos, el equilibrio esencial de los macronutrientes y cómo la proteína y su calidad juega un papel importante en la melanización de los insectos, aportando al fortalecimiento del sistema inmune y al mejor desarrollo de las larvas. Los resultados de este estudio indican que larvas con un menor desempeño en el sistema inmune y en la supervivencia, pueden estar compensando su protección con una mayor melanización cuticular y un menor crecimiento.

Se observó que, para obtener individuos con mejores resultados en la respuesta inmune y parámetros demográficos, es necesario suministrar una proporción adecuada de proteínas y lípidos, en la que también podría influir la calidad de las primeras. Se debe considerar que en este caso una mayor melanización de la cutícula no necesariamente está vinculada con una mejor nutrición de las larvas.

Para la cría en condiciones de laboratorio que pueda brindar individuos para experimentación se recomienda utilizar las dietas de frijol sin leche en polvo y
garbanzo con leche en polvo, debido a que las larvas presentaron los mejores valores demográficos sin afectar negativamente su respuesta inmune.
RESPUESTA DE DIFERENTES GENOTIPOS DE *Amaranthus* spp AL ATAQUE DEL BARRENADOR DEL TALLO *Amauromyza abnormalis* (MALLOCH) (DIPTERA: AGROMYZIDAE).

Erica Muñiz-Reyes¹, Yesseal Medellín-Olivo², Eduardo Espitia-Rangel¹, Lucila González-Molina¹ y Alma Velia Ayala-Garay¹.

¹Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Valle de México. Km.13.5 de la Carretera los Reyes-Texcoco. 56250, Coatlinchan, Texcoco, Estado de México.

²Universidad Autónoma Chapingo. Departamento de Parasitología Agrícola. Km. 38.5 Carretera México – Texcoco. 56230. Chapingo, Texcoco, Estado de México.

*Autor de correspondencia: correo muniz.ERICA@inifap.gob.mx

INTRODUCCIÓN

A pesar de que el amaranto tiene un gran potencial económico y nutricional, el cultivo no ha tenido la atención debida en diversos aspectos. La investigación y aportación al manejo agronómico y específicamente el de insectos plaga, no ha ido a la par del estudio de mejoramiento genético, en parte, por considerarlo de importancia secundaria. Actualmente, los productores realizan el manejo de plagas de manera inadecuada, desconocen los momentos indicados de hacerlo, además de que no hay estudios de efectividad biológica que sustente el uso de insecticidas, ya sean biológicos o químicos. Las variedades que se producen en las diferentes zonas productoras, son utilizadas por los rendimientos que pueden ofrecer, pero no se tiene información para cada variedad sobre la susceptibilidad que puedan tener al daño de las plagas de mayor importancia y en cada condición de clima y altitud. Los escasos trabajos en la literatura científica, aportan datos generales de los insectos que están presentes en las diferentes etapas del cultivo. Se reportan algunos fitófagos que tienen un potencial de daño importante como larvas de Lepidoptera, pulgones, chinches en panoja y barrenadores (Espitia *et al.*, 2012). El barrenador del tallo más reportado es *Amauromyza abnormalis* y se encuentra en todas las zonas productoras (Bautista *et al.* 1997). Las larvas de este insecto se alimentan del interior del tallo formando galerías; el daño es visible y puede afectar hasta el 95 % de los tallos. El objetivo del presente trabajo fue determinar la
susceptibilidad de diferentes genotipos de *Amaranthus* spp al daño por *A. abnormalis* y con ello informar a los productores para una mejor toma de decisiones.

MATERIALES Y MÉTODOS

El establecimiento del experimento se llevó a cabo en el Campo Experimental Valle de México del INIFAP, Santa Lucía de Prías Texcoco, Edo. de México, y en la comunidad de Cuapiaxtla, Tlaxcala. Se utilizaron seis genotipos de *Amaranthus hypochondriacus*: Revancha, Nutrisol, AGIM y AG-67 y *Amaranthus cruentus*: Amaranteca, Benito. La siembra se realizó en junio de 2016 y fue de manera directa. A una densidad de 80,000 plantas por hectárea, la distancia de separación entre surcos fue de 80 cm, la distancia entre matas fue de 15 cm. Se realizó raleo de plantas para finalmente dejar dos plantas en cada punto de siembra. Se realizaron actividades de deshierbes, fertilización al suelo orgánica y foliar en dos aplicaciones. No se realizaron aplicaciones de insecticida. Se utilizó un diseño experimental de parcelas divididas en bloques al azar con submuestreo. La variable respuesta fue el porcentaje de daño y se tuvieron tres repeticiones. Para la toma de datos se consideró submuestra de 5 plantas en cada repetición. Se cortaron los tallos a ras de suelo y se abrieron de manera longitudinal hasta el ápice de la panoja. Se realizó conteo de larvas por planta y a la par se establecieron los porcentajes de daño considerando el total de la longitud del tallo bajo una escala de cuatro niveles en rango de 25 %. Las larvas extraídas de los tallos se identificaron mediante claves taxonómicas y se verificó la especie. Los datos obtenidos de porcentaje de daño por tallo, se analizaron con el paquete estadístico R versión 3.4.3 Copyright (C) 2017 The R Foundation for Statistical Computing. Se realizó prueba de medias Tukey con un nivel de significancia $\alpha=0.05$.

RESULTADOS Y DISCUSIÓN

Después de analizar los datos considerando el porcentaje de daño, el ANOVA arrojó que no hubo efecto de la localidad, por lo que el análisis fue enfocado hacia el efecto sobre genotipos donde sí se encontraron diferencias significativas. La comparación de medias indicó que la variedad Revancha (a) fue la más dañada por efecto del
barrenador, mientras que AG67 (b), fue la que menor daño reportó. Nutrisol, Benito, Amaranteca y AGIM no mostraron diferencias significativas (ab) en cuanto al porcentaje de daño. Al respecto, Torres-Saldaña et al. (2004), son los únicos autores que han reportado datos sobre esta especie en respuesta varietal de amaranto. Ellos establecieron diferencias significativas en el ataque por barrenador en los cultivares Frondosa y Tulyehualco de *A. hypochondriacus* determinado por el número de larvas encontradas en cosecha. A diferencia de estos autores, se decidió la extracción de larvas 30 días antes para evitar que la mayor parte de las larvas hubiesen abandonado el tallo; sin embargo, lo hallado indicó que algunas larvas habían abandonado el tallo y no se logró establecer si la variedad tuvo que ver en estas diferencias de salida del tallo y al analizar datos se podría tener un sesgo importante. En cuanto al porcentaje de daño, las diferencias sugieren que las características inherentes al material genético pueden influir directamente en la preferencia por el barrenador. El cultivar AG67 proviene de la raza Nepal, mientras que Revancha es una variedad mejorada, proviene de una mezcla de raza mexicana y Azteca (Espitia *et al.*, 2010). Se ha reportado que, en algunos casos, las variedades mejoradas son más vulnerables al estrés biótico, donde se encuentra la afectación por ataque de plagas debido a su alta homogeneidad genética que en materiales silvestres o en proceso de mejoramiento (Cubero, 2013). Revancha fue mejorada buscando obtener mayores rendimientos en grano, uniformidad en la madurez y aptitud para la cosecha mecánica (Espitia *et al.* 2010) pero no necesariamente implicaba tolerancia a plagas. Esta variedad mejorada puede tener una mayor susceptibilidad al ataque de larvas de barrenador. La especie se determinó por medio del uso de claves taxonómicas (Palacios *et al.*, 2008).

CONCLUSIONES
Se encontraron diferencias significativas para daño por barrenador en genotipos. No así en localidades. La variedad Revancha fue el genotipo que registró mayor daño que el resto de los genotipos.
LITERATURA CITADA

Antecedentes

Herpetogramma bipunctalis (Lepidoptera: Pyralidae) ha sido considerada como una plaga defoliadora de diferentes plantas comestibles de las familias Chenopodiaceae y Amaranthaceae, tales como acelgas, espinacas y amaranto (*Pérez-Torres et al.*, 2011); también ataca a malezas terrestres y acuáticas (*Allyson*, 1984).

Los daños ocasionados al cultivo de amaranto son realizados por las larvas alimentándose vorazmente de las hojas tiernas de la planta, dejando esqueletizada las hojas, lo que reduce significativamente el proceso fotosintético, la larva dobla las hojas con un hilo de seda que fabrica para protegerse además de realizar su desarrollo larval; cuando se alimenta de la panoja y de los granos detiene su desarrollo por lo que tiende atrofiándola, ya que la tiende a secarse totalmente. Se ha reportado desde el 2008 que al terminar de alimentarse de la inflorescencia o panoja continúa consumiendo el tallo, realizando una gran oquedad por donde entra, para así poder consumir el xilema y floema dejando el tallo completamente hueco, se ha encontrado a partir de septiembre a noviembre (*Pérez-Torres et al.*, 2017).

Esta especie es considerada en México como una de las principales plagas de importancia económica, agravando la producción del cultivo, lo que hace que los productores busquen medios para controlar estos organismos teniendo en primera instancia a los insecticidas sintéticos quienes ofrecen una forma rápida de corregir...
daños y por ende ventajas económicas, sin embargo emergen otros problemas como la resistencia de los insectos plagas a los químicos, incremento de plagas, contaminación ambiental, mayores costos (Badii et al, 2005, Badii y Abreu, 2006), y daños a su salud.

Por consiguiente, se tiene la necesidad de buscar alternativas agroecológicas para minimizar los insectos plaga, pero antes de generar una tecnología o un método de control eficiente y adecuado es primordial conocer lo mejor posible al insecto que se requiere controlar, por lo que es recomendable realizar estudios encaminados al ciclo biológico de esta especie para poder saber en qué etapa de desarrollo dentro del cultivo se deben de tomar medidas y poder protegerlo del daño por esta especie. Es por eso que el objetivo de este trabajo fue obtener el ciclo de de *Herpetogramma bipunctalis* bajo condiciones controladas de temperatura y humedad a nivel laboratorio.

Metodología

Se colectaron larvas de *H. bipunctalis* en cultivo de *Amaranthus hypochondriacus* L., en San Lucas Tulcingo, municipio de Tochimilco, Puebla (longitud: 18º 50’14’’, latitud: 98º 35’ 42’’ y una altitud de 1 950 m), (INAFED, 2009). Las larvas se llevaron al laboratorio del Centro de Agroecología del Instituto de Ciencias de la BUAP, para revisarlas que no estuvieran enfermas o parasitadas, el 10% del material se fijaron en líquido pampel durante cuatro días y después se pasaron a alcohol al 80%, fueron etiquetadas con los datos de localidad. Las larvas sanas se separaron por tamaño y se dejaron en recipientes pequeños de plástico para obtener los adultos y comenzar el ciclo de vida.

Una vez obtenidos los adultos se colocaron en grupos de 10 parejas dentro de ponedores para aparearse, copular y para que la hembra oviposite, como alimento se les dio una solución azucarada al 10%. Se efectuaron observaciones diariamente hasta obtener los huevecillos, estos fueron colocados en cajas Petrí, hasta obtener las larvas, las cuales se mantuvieron de forma individual en recipientes de plástico con tapa de 3X3.5 cm de altura, como alimento se les proporcionó hojas de acelga, hay se mantuvieron las larvas hasta obtener las prepupas y pupas. Cuando se
encontraron prepupas se retiraron de estos recipientes y fueron colocados de forma individual sobre una cama de arena previamente esterilizada, dentro de recipientes de plástico de 500 ml de capacidad, se dejaron hasta obtener los adultos. Además, se realizaron montaje de adultos en alfileres entomológicos, se etiquetaron e identificaron y conservarán en la colección entomológica del Instituto de Ciencias de la BUAP. Todas los instares de esta especie se dejaron dentro de un cuarto de cría a una temperatura de $26 \pm 2^\circ C$ y humedad relativa de $70 \pm 10\%$ y fotoperíodo de 12:12.

Los datos que se registraron fueron: tiempo de desarrollo de cada estadio larval y duración del estado pupal hasta la formación del adulto.

Resultados y discusión

El ciclo de vida de la especie en estudio, se inició con un total de 100 huevos donde se tuvo que el periodo de incubación fue de 4 a 5 días. Los datos obtenidos en este trabajo no coinciden con los obtenidos por Diez-Rodríguez *et al.* 2013, debido a que el periodo de incubación en promedio fue de 5.59 días, con una diferencia de un día, además que las condiciones de temperatura y fotoperíodo son relativamente diferentes, mientras que existen dos horas de diferencia entre el fotoperíodo.

El periodo de desarrollo de las larvas de primer, segundo y tercer estadio fue de 2 a 3 días; mientras que el cuarto estadio se desarrolló durante un periodo de 2 a 4 días y para el quinto estadio tuvo un rango de 3 a 7 días. Por lo tanto, la duración total desde larva uno al cinco tuvo un promedio de 15.16 días. A diferencia de los resultados obtenidos por Lara-Villalón *et al.* 2014, citan que en Tamaulipas el periodo larval de esta especie fue de 22 días, observemos el tiempo de desarrollo se prolonga por un periodo de 6.44 días más, sin embargo, no se sabe a qué se deba esto con exactitud, pues no se da a conocer los tiempos de cada etapa larval mucho menos las condiciones en que se mantuvo la cría.

La prepupa se obtuvo en un periodo de 1 a 2 días, la pupa abarcó de 7 a 12 días. Con respecto al desarrollo de la pupa o crisálida Diez-Rodríguez *et al.* 2013, comentan que esta etapa tarda entre 10 a 11 días en Brasil.
El desarrollo de *H. bipunctalis* de huevo a adulto e imago va desde 23 a 39 días. En este trabajo se registra por primera vez el ciclo de vida completo de esta especie en el estado de Puebla (Gráfica 1), a pesar de que existen pocos trabajos sobre su desarrollo, no se especifica con exactitud los periodos de cada uno de los estados, principalmente de las cinco etapas en que pasa la larva. El resultado relacionado a la duración promedio de huevo a adulto difiere mucho al obtenido por Diez-Rodríguez *et al.* 2013, debido a que reportan que el tiempo de desarrollo requerido es de 45.33 días, esta prolongación de desarrollo tan drástico se debe primordialmente al tipo de alimento que da a las larvas ya que puede contener mucha o poca cantidad de nutrientes, en este caso fueron hojas de zarzamora, mientras que en este trabajo se les dio hojas de acelga, además de las condiciones donde se encontraron (temperatura, humedad y fotoperiodo) durante la cría. Esto concuerda con lo reportado por los mismos autores donde mencionan que efectivamente la forma de alimento es un factor primordial durante de los diferentes instares de dicha especie, pues el ciclo de vida puede prolongarse o acelerar su desarrollo, un ejemplo de esto es cuando a las larvas de *H. bipunctalis* se les crío con hojas de cultivo de Guarani su desarrollo fue más corto (22.63 días), mientras que cuando se les crío con hojas de Xayante este se prolongó a 26.37 días. Sin embargo, a pesar de lo reportado por estos investigadores existe una diferencia de casi tres días.

Gráfica 1. Tiempo de desarrollo de *Herpetogramma bipunctalis* en laboratorio
Literatura Citada

Bacillus thuringiensis var israeliensis (BTI) PARA EL CONTROL LARVARIO DE Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) BAJO CONDICIONES DE LABORATORIO.

Abel Jimenez-Alejo1*, José Luis Rosas-Acevedo1, María Laura Sampedro-Rosas1
Rocío Ramírez-Jiménez2 y Ewry Arvid Zárate-Nahón2

1Laboratorio de Biomonitoreo y Control Biológico, Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Calle Pino s/n C. P. 39640, Acapulco, Guerrero, México.

2Laboratorio de Entomología Médica, Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Calle Pino s/n C. P. 39640, Acapulco, Guerrero, México.

*Autor de correspondencia: correo abelj911@mail.com

Antecedentes

Dengue, Chikungunya y Zika, provocan importantes problemas de salud pública en la mayoría de los estados de México, principalmente en las áreas costeras, donde existen todas las características que favorecen la reproducción y contacto vector-humano (DGE-SSA; 2018). Tradicionalmente el vector Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) se combate con insecticidas (WHO., 2017), se han buscado alternativas que no dañen el ambiente y no crean resistencia fácilmente como los insecticidas (Chino et al., 2014; Baldacchino et al., 2015). En este sentido el uso de Bacillus thuringiensis var israeliensis (Bti) es de alta efectividad, ya que induce la muerte por producción de toxinas, lo que evita la posibilidad de desarrollo de resistencia (Da Costa et al., 2010).

En México las ovitrampas son utilizadas por el Programa de Vectores para la vigilancia y monitoreo de las poblaciones del mosquito (NOM-032-SSA2-2014; WHO, 2017), sin embargo, se han vuelto un método de control; ovitrampas letales (adicionadas con hongos o bacterias entomopatógenas) para eliminar poblaciones inmaduras de Ae aegypti (WHO, 2017; Alarcón et al. 2014).

Justificación
Las ovitrampas han demostrado ser una herramienta efectiva para la vigilancia de *Ae. aegypti*. Los resultados indican que las ovitrampas con *Bti* pueden reducir la densidad vectorial de *Aedes aegypti*, aparte que tienen mayor aceptación por la población y son amigables con el ambiente. Entonces es pertinente diseñar ovitrampas letales que contengan biorracionales para el control larvario de *Aedes aegypti*.

Metodología

Evaluación de la actividad larvicida bajo condiciones de laboratorio

Se probaron seis dosis de Vectobac © WG (2, 4, 6, 8, 10 y 12 mg), y un control por quintuplicado para cada unidad experimental, la unidad experimental estuvo conformada por 20 larvas en 800 ml de agua en una ovitrampa estándar de 1L de capacidad. La mortalidad fue evaluada a las 24 horas. Se obtuvo el 100% de mortalidad en todos los tratamientos a excepción del control. Por lo cual se midió la residualidad con 2mg, 6mg y 8mg. Vectobac © WG.

Los ensayos de residualidad se realizaron en ovitrampas estándar color negro (1L de volumen, 10 cm de diámetro) fueron llenadas a 4/5 de su capacidad con 800ml de agua y se añadieron las formulaciones (día 0). A los 8, 16, 20, 30 y 40 días se añadieron 20 larvas de 3er instar de *Ae. aegypti* a cada ovitrampa. La mortalidad larvaria se registró después de 24 hrs, posteriormente las larvas vivas y muertas fueron removidas. El ensayo se realizó por quintuplicado. El diseño experimental fue montado en las instalaciones del Laboratorio de Entomología Medica del Centro de Investigación de Enfermedades Tropicales de la Universidad Autónoma de Guerrero.

Análisis estadístico

Todos los procedimientos estadísticos fueron realizados mediante SPSS v. 23.0. Los datos de mortalidad larvaria fueron analizados mediante un análisis de varianza (ANOVA), se consideró el tratamiento (diferentes dosis de Vectobac DWG ©) como el factor principal y cinco niveles temporales (8, 16, 20, 30 y 40 días). Se utilizó el
procedimiento de Tukey para la comparación de promedios de los distintos grupos con un nivel de significancia de 0.05.

Resultados

Evaluación de la actividad larvicida bajo condiciones de laboratorio

Los datos de la actividad larvicida de Vectobac® contra *Ae. aegypti* a diferentes intervalos de tiempo se presentan en el cuadro 1. La mortalidad larvaria en el control fue mínima (0-2%), la mortalidad larvaria con las tres dosis del tratamiento fue alta con diferencias significativas entre los tratamientos. A los ocho días para los tres tratamientos se registró mortalidad del 100%, consistentemente la dosis de 8 mg produjo el 100% de mortalidad larvaria hasta los 40 días considerándose como la residualidad más larga (cuadro 1).

Cuadro 1. Actividad larvicida de diferentes dosis de Vectobac WG ®

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>% Mortalidad (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Control</td>
<td>0.0 ± 0.0^a</td>
</tr>
<tr>
<td>Vectobac</td>
<td></td>
</tr>
<tr>
<td>WG ® 2mg</td>
<td>100.0 ± 0.0^b</td>
</tr>
<tr>
<td>Vectobac</td>
<td></td>
</tr>
<tr>
<td>WG ® 6mg</td>
<td>100.0 ± 0.0^b</td>
</tr>
<tr>
<td>Vectobac</td>
<td></td>
</tr>
<tr>
<td>WG ® 8mg</td>
<td>100.0 ± 0.0^b</td>
</tr>
</tbody>
</table>

*Letras diferentes por columnas indican diferencias estadísticamente significativas de acuerdo a la prueba de Tukey

Discusión.

Bajo condiciones de laboratorio todas las dosis evaluadas de Vectobac® demostraron alta efectividad y mantuvieron la residualidad de su actividad toxica sobre larvas de *Ae. aegypti* en ovitrampas hasta por tres semanas (20 días), sin embargo, la dosis de 8 mg mostró alta actividad sobre la mortalidad larvaria hasta por 40 días, es necesario evaluar con dosis más altas si la residualidad se prolonga por mas días o se mantiene.
Cuando las ovitrampas se evalúan en condiciones de campo es necesario revisarlas cada semana tanto las que tienen tratamiento como las de control; para que no se conviertan en potenciales criaderos. Con una megadosis de *Bti* se puede ampliar la residualidad y por lo tanto ayudaría a disminuir la densidad vectorial de *Ae. aegypti*.

Literatura Citada

MOSQUITOS (DIPTERA: CULICIDAE) DE LAS LOCALIDADES: LAS MINAS Y TLACOACHISTLAHUACA, GUERRERO, MÉXICO.

Francisco Alexis Mejía-Herrera¹, Amando Ramos de la Cruz¹, Natieli Marino-Romero¹, Antonio Juan Cortés-Guzmán¹, Abel Jiménez-Alejo², Ewry Arvid Zárate-Nahón³, Rocío Ramírez-Jiménez³*

¹Laboratorio de Entomología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n C. P. 39010, Chilpancingo, Guerrero, México.

²Laboratorio de Biomonitoreo y Control Biológico, Centro de Ciencias de Desarrollo Regional, Universidad Autónoma de Guerrero, Calle Pino s/n C. P. 39640, Acapulco, Guerrero, México.

³Laboratorio de Entomología Médica, Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Calle Pino s/n C. P. 39640, Acapulco, Guerrero, México.

*Autor de correspondencia: correo rociormz14@hotmail.com

Antecedentes

Los primeros estudios sobre la diversidad de mosquitos en México se publicaron a finales del siglo XVIII. Posteriormente las investigaciones de Howard, Dyar y Knab entre 1912-1917 y Dyar en 1928 relacionadas con la entomofauna de la familia Culicidae se intensificaron a partir de la segunda década del siglo XX (Ibáñez-Bernal et al., 1996).

Casas-Martínez realizó un estudio durante los años 2001-2003, realizando muestreos de mosquitos silvestres, en 129 localidades: 17 Guerrero, 43 Oaxaca, 67 Chiapas, una del DF y una del Estado de México, el número de especies identificadas fue de 21. En Colima se realizó un estudio de distribución de mosquitos selváticos, se colectó en 33 sitios. El resultado fue: 3076 mosquitos, las especies más abundantes fueron *Aedes taeniorhynchus*, *Ae. trivittatus* y *Deinocerites pseudes*. En la región costera (Costa Chica) de Guerrero; Ortega y colaboradores, realizaron colectas de campo durante el año 2008, encontrando 39 especies en dicha región.

Justificación
El conocer que mosquitos están presentes en dichas localidades será útil para conducir estrategias específicas para el control de vectores que pueden estar participando activamente en los ciclos de transmisión de enfermedades tanto en animales como humanos, así como para estar al tanto de los patrones de distribución y dispersión de las especies de culícidos en el estado de Guerrero.

Metodología

Área de estudio

El municipio de Tlacoachistlahuaca se localiza al sureste de la capital del Estado, a 400 metros de altura sobre el nivel del mar, dentro de la región Costa Chica, a 220 kilómetros de distancia de Acapulco. El municipio se ubica entre los paralelos 16°47’ y 17°12’ de latitud norte y los 93°30’ y 98°12´ de longitud oeste respecto del meridiano de Greenwich (Vargas y Jiménez, 2015)

Colectas

Durante un año (junio 2016 - junio 2017) se realizaron 10 colectas en cada zona (Tlacoachistlahuaca y Las Minas), cinco colectas en periodo de lluvia y cinco en periodo de seca. Los mosquitos se colectaron a través de búsqueda activa y pasiva utilizando trampas tipo CDC, aspirador bucal, aspirador eléctrico y cebo humano.

Transporte e identificación

El material colectado fue etiquetado y montado en campo, se trasladó al laboratorio de entomología de la Facultad de Ciencias Químico Biológicas donde fue identificado a nivel de especie, de acuerdo con las claves descritas por Vargas y Martínez-Palacios en 1956, Clark-Gill y Darsie en 1983 y Wilkerson y colaboradores en 1993. Una vez identificados se etiquetaron y se almacenaron en la colección de artrópodos de la Facultad de Ciencias Químico Biológicas.

Resultados

Se colectó un total de 165 mosquitos, se identificaron 129. Para Tlacoachistlahuaca 76 y 53 para Las Minas. Se encontró un total de 10 especies distribuidas en seis géneros, siendo *Culex* el más abundante en las dos zonas de estudio. Tabla 1.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1. Lista de especies de culícidos colectadas en las dos zonas de estudio
Discusión

Las especies encontradas se distribuyen desde los 396 msnm como referencia mínima en Tlacoachistlahuaca hasta los 573 msnm como referencia máxima en Las Minas. Obteniendo a *Cx. coronator* (36 individuos) y *Ae. aegypti* (30 individuos) como los individuos que más se colectaron en las zonas de estudio. Resalta la presencia de *Ae. aegypti* en Las Minas, esta zona prácticamente fue nulo los criaderos de agua limpia. Este estudio es limitado, ya que falto colectar en más zonas y utilizar un mayor número de trampas, sin embargo, los resultados ofrecen un panorama de la fauna de culícidos de la región Costa Chica de Guerrero.

Literatura Citada

A. Laura Flores-Villegas¹, Alex Córdoba-Aguilar², Paz María Salazar-Schettino¹, Armando Pérez-Torres³, José Antonio De Fuentes-Vicente⁴, Mauro O. Vences-Blanco¹, Martha I. Bucio-Torres¹ y Margarita Cabrera-Bravo*¹

¹Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
²Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510, Coyoacán, Ciudad de México, México
³Departamento de Biología Celular y Tisular; Facultad de Medicina, UNAM, Mexico City 04510, Mexico

*Autor de correspondencia: correo imay@unam.mx

La especie *Meccus pallidipennis* (Hemiptera: Reduviidae) es un vector importante en la transmisión de *Trypanosoma cruzi* (Trypanosomatida: Trypanosomatidae), el agente causal de la enfermedad de Chagas (Salazar-Schettino *et al*., 2010). La interacción hospedero-parásito ha sido estudiada para entender como es afectada la transmisión y prevalencia de la enfermedad. Sin embargo, varios aspectos de la respuesta inmune en insectos son desconocidos, como la actividad de la enzima fenoloxidasa (PO), involucrada en la defensa contra patógenos, una característica de la fenoloxidasa es la producción de quinonas tóxicas para la producción de melanina (Flores-Villegas *et al*., 2015; Genta *et al*., 2010). Durante la infección con
T. cruzi, varios cambios morfológicos ocurren en el intestino del insecto, por ejemplo, en el intestino medio posterior ocurre la fisión binaria del parásito y su adherencia a la membrana perimicrovellosa (MPM) en el intestino medio anterior (IMA), actuando como un sitio de adhesión para el parásito. Por lo tanto los objetivos de este estudio fueron 1) Cuantificar el número de parásitos en heces, durante la infección con *T. cruzi*, 2) Medir la actividad de la enzima Fenoloxidasa en el intestino medio anterior (IMA, sitio de adhesión y división del parásito) y 3) Confirmar la adherencia del parásito a la membrana perimicrovellosa

Se obtuvieron dos grupos, ninjas de quinto estadio infectadas y libres de infección con *Trypanosoma cruzi*, en el primer grupo se cuantificaron el número de parásitos por ml. Para explorar la respuesta inmune del vector, ambos grupos fueron comparados y se determinó la actividad de la enzima fenoloxidasa, a través de un ensayo enzimático donde por espectrofotometría de determinó la conversión catalítica de L-DOPA (3, 4-dihydroxy-L-phenylalanine, sin color) a dopacromo (rojo-café) en el intestino del transmisor. La actividad enzimática fué medida como unidades enzimáticas (U), en la que 1 U es la cantidad de enzima que produce 1 µmol de dopacromo por minuto. En el día 9 posterior a la infección, dos intestinos (intestino medio anterior-IMA), del grupo control e infectado fueron utilizados para la tinción de Hematoxilina-Eosina. Se exploraron un total de 100 campos (10x), en 10 secciones por intestino. El número de parásitos en heces fué comparado utilizando la prueba de Kruskal-Wallis (K-W), y con la misma prueba se examinaron posibles diferencias entre grupos en relación a la expression de Fenoloxidasa en el intestino. Las diferencias entre grupos en el tiempo se compararon con la prueba de Mann-Whitney test (M-W). Los datos son expresados como la media ± error standard. Las gráficas fueron hechas con el programa SPSS, versión 22.

La parasitemia en insectos infectados alcanzó su máxima densidad en heces en el día 7 posterior a la infección. La menor actividad de la enzima fenoloxidasa (PO) en el intestino medio anterior se presentó en el día 9 posterior a la infección. Los cambios morfológicos post-infección en la membrana perimicrovellosa fueron típicos de los que se han reportado con anterioridad en triatominos (*Castro et al.*, 2012).
El desarrollo de una alta parasitemia en heces fue relativamente alta en comparación con otras especies de triatominos, y coincide con los valores de fenoloxidasa aquí reportados, indicando una posible respuesta inmune post-infección en el vector *M. pallidipennis*.

Literatura citada

OBSERVACIONES DEL TRATAMIENTO DE LARVAS DE MOSCA *Lucilia sericata*, EN HERIDAS DE PIE DIABÉTICO WAGNER I.

Ma. del Carmen Vera Rosales* y Ma. Teresa Núñez Cardona
Universidad Autónoma Metropolitana-X

Autor de correspondencia: correo carmen.vera@hotmail.com

INTRODUCCION. Las úlceras crónicas representan en la actualidad un problema de alta incidencia que afecta a personas en todos los niveles asistenciales y todas las clases sociales. Por lo que es necesario elevar el compromiso de los profesionales de la salud, de potenciar los avances y conocimientos en esta problemática. En este contexto existen factores que intervienen en el pronóstico de curación, como son las infecciones y la presencia de tejido necrótico. El gel de larvas de Lucillia sericata, se presenta como una opción para el tratamiento de heridas con poca carga necrótica con una elevada probabilidad de cicatrización.

OBJETIVO. Evaluar el uso de larvas de *Lucilia sericata* en el tratamiento de heridas con poca carga necrótica, en 5 pacientes (Wagner I), observando la aparición de tejido de granulación y el tiempo de cicatrización.

MATERIAL Y METODOS. Se presentan las observaciones de cinco pacientes diabéticos con diferentes tipos de heridas en el pie, todas Wagner 1, 4 varones y 1 mujer con un promedio de edad de 60 años, todos fueron tratados siguiendo las pautas de asepsia correspondiente y aplicando larvas de L. s.; se utilizó una hoja de Excel, en donde se trabajó la escala de Kundin (determina las dimensiones de la herida), la ecuación de Guilman y la ecuación en función del área. No se descuidó los signos y síntomas de los sujetos en estudio.

DISCUSION Y RESULTADOS

Se consideró un periodo de 48 horas para observar las mejorías en las heridas de los pacientes, tiempo en el que se observó una reducción promedio de la herida en un 20% de mejoría cerrando las heridas con tejido de granulación en un período de 10 a 15 días en todos los pacientes. Para lo anterior, se siguieron las pautas de asepsia recomendadas para cada caso.

CONCLUSIÓN.

El uso del gel de larvas, en este estudio, resultó efectivo en el 90% de los casos tratados, probablemente las enzimas que degradan el tejido necrótico que producen las larvas, sean activas en la presentación que aplicó, ya que dichas heridas fueron liberadas de material inviable y contaminado, acelerando el proceso de cicatrización. Se requieren estudios mas minuciosas que amplíen estas observaciones.
BIBLIOGRAFÍA

CARACTERÍSTICAS DEL CICLO BIOLÓGICO DE Lucilia sericata, OBSERVACIONES EN SU DIETA: SUS POSIBLES IMPLICACIONES EN EL USO DE LARVAS PARA PIE DIABÉTICO.

*Ma. DEL Carmen Vera Rosales y **Ma. Fernanda Méndez Arroyo

*Profesora del Dpto de Atención a la Salud; ** Pste Lic Lab de Pie diabético

*Autor de correspondencia: correo carmen.vera@hotmail.com

INTRODUCCION: Se ha demostrado la eficacia de las larvas de Lucilia sericata (LS), en el tratamiento de heridas crónicas de difícil cicatrización, su actividad consta principalmente de 3 procesos principales: desbridamiento, actividad antimicrobiana y estimulación del tejido de granulación. Contar con huevos y larvas de L.S., en las mejores condiciones de sobrevivencia y calidad de vida proporciona un mayor rendimiento y eficacia en el proceso de cicatrización, por lo que se busca determinar una dieta balanceada que favorezcan la calidad de reproducción.

OBJETIVO: Determinar la duración del ciclo de vida, la proporción y la supervivencia así como la calidad de los huevos de la mosca, LS en relación a una dieta balanceada. MATERIAL Y METODO. Se utilizaron alimentos con proteínas, grasas saturadas, Carbohidratos y sustancia con características de luz, humedad y olor adecuadas a sus preferencias. Se inició con la dieta A: sustrato de hígado de pollo y clara de huevo en polvo. Los sustratos se utilizaron, tanto en larvas (500) como en moscas adultas, en una jaula acondicionada, las larvas en una incubadora, con las características correspondientes. Se cambiaron los sustratos y se repitió la operación, esta vez con hígado de res, azúcar y leche (Dieta B). En los dos cambios de dieta se utilizó un esteroscopio. Se utilizó estadística descriptiva empleando variables como, tiempo y número de la muestra, sexo y tamaño corporal, con respecto a su alimentación. RESULTADOS: Las dietas utilizadas, proporcionaron los nutrientes necesarios para la totalidad del ciclo de vida de L. S., siendo la dieta
A, la que presentó mayor deficiencia, tanto en el tiempo de sobrevivencia, como en el desarrollo de las larvas; en cambio en la dieta B, se reportó mayor índice de sobrevivencia, tanto en las larvas como en las moscas adultas, estableciéndose una “armonía”, en la convivencia.